Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors
This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil:
... Show MoreTi6Al4V alloy is widely used in aerospace and medical applications. It is classified as a difficult to machine material due to its low thermal conductivity and high chemical reactivity. In this study, hybrid intelligent models have been developed to predict surface roughness when end milling Ti6Al4V alloy with a Physical Vapor Deposition PVD coated tool under dry cutting conditions. Back propagation neural network (BPNN) has been hybridized with two heuristic optimization techniques, namely: gravitational search algorithm (GSA) and genetic algorithm (GA). Taguchi method was used with an L27 orthogonal array to generate 27 experiment runs. Design expert software was used to do analysis of variances (ANOVA). The experimental data were
... Show MoreSoil is a crucial component of environment. Total soil analysis may give information about possible enrichment of the soil with heavy metals. Heavy metals, potentially contaminate soils, may have been dumped on the ground. chromium, nickel and cadmium,
Three ligands were prepared, spectroscopic method and elemental analysis verified their structures. The L1 and L2 ligands are flavylium salts while the third one L3 is a Flavon. The reactions between transition metal salts and the ligands have synthesized two groups of new metal complexes, one group contains L1, L3 coordinated with the metal ion. The other group contains L2, L3 and the metal. These complexes have been identified by available spectroscopic tools (UV-Visible and IR), the C.H.N results confirmed the proposed structures. The experimental data disclosed that the complexes were coordinated by 6the coordinate with mono-and bidentate ligands forming octahedral structure, in which L3 acts as monodentate and L1, L2 as bidentate ligan
... Show MoreA laboratory experiment was carried out in the laboratories of College of Agricultural Engineering Sciences, University of Baghdad in 2017. Three factors were studied; Sorghum bicolor L. cultivars (Inqath, Rabeh and Buhoth70), primed and unprimed seed, and salt stress (0, 6, 9 and 12 dS.m−1). The aim was to improve germination and seedling growth under salt stress. The results showed significant superiority of Buhoth70 cultivar compared to others, significantly superiority of primed seed compared to the unprimed and significant negative impact as long as increasing levels of salt stress at germination ratio, plumule length, dry seedling weight and seedling vigor index. The interaction between cultivars, priming and salt stress showed that
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreThis research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show MoreThis study is an approach to assign the land area of Kirkuk city [ a city located in the northern of Iraq, 236 kilometers north of Baghdad and 83 kilometers south of Erbil [ Climatic atlas of Iraq, 1941-1970 ] into different multi zones by using Satellite image and Arc Map10.3, zones of different traffic noise pollutions. Land zonings process like what achieved in this paper will help and of it’s of a high interest point for the future of Kirkuk city especially urban
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter