This paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-linear optimization problem and use the lsqnonlin non-linear least-square solver from the MATLAB optimization toolbox. Through examples and discussions, we determine the optimal values of the regulation parameters to ensure accurate, convergent, and stable reconstructions. The direct problem is well-posed, and the Crank–Nicolson method provides accurate solutions with relative errors below 0.006% when the discretization elements are M=N=80. The accuracy of the forward solutions helps to obtain sensible solutions for the inverse problem. Although the inverse problem is ill-posed, we determine the optimal regularization parameter values to obtain satisfactory solutions. We also investigate the existence of inverse solutions to the considered problems and verify their uniqueness based on established definitions and theorems.
An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
All modern critical approaches attempt to cover the meanings and overtones of the text, claiming that they are better than others in the analysis and attainment of the intended meanings of the text. The structural approach claims to be able to do so more than any other modern critical approach, as it claimed that it is possible to separate what is read from the reader, on the presumed belief that it is possible to read the text with a zero-memory. However, the studies in criticism of criticism state that each of these approaches is successful in dealing with the text in one or more aspects while failing in one or more aspects. Consequently, the criticism whether the approach possesses the text, or that the text rejects this possession, r
... Show MoreDigital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreThe Hartley transform generalizes to the fractional Hartley transform (FRHT) which gives various uses in different fields of image encryption. Unfortunately, the available literature of fractional Hartley transform is unable to provide its inversion theorem. So accordingly original function cannot retrieve directly, which restrict its applications. The intension of this paper is to propose inversion theorem of fractional Hartley transform to overcome this drawback. Moreover, some properties of fractional Hartley transform are discussed in this paper.
The study presents the test results of Completely Decomposed Granite (CDG) soil tested under drained triaxial compression, direct shear and simple shear tests. Special attention was focused on the modification of the upper halve of conventional Direct Shear Test (DST) to behave as free
head in movement along with vertical strain control during shear stage by using Geotechnical Digital System (GDS). The results show that Free Direct Shear Test (FDST) has clear effect on the measured shear stress and vertical strain during the test. It has been found that shear strength
parameters measured from FDST were closer to those measured from simple shear and drained triaxial compression test. This study also provides an independent check on
FG Mohammed, HM Al-Dabbas, Science International, 2018 - Cited by 2
Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in human body. Usually, the immune system keeps yeast under control. If the individual is sick or taking antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways including thrush is a yeast infection that causes white patches in oral cavity ,Candida esophagitis is thrush that spreads to esophagus, women can get vaginal yeast infections,(vaginitis) causing itchiness, pain and discharge, yeast infections of the skin cause itching and rashes ,yeast infections in bloodstream can be life-threatening . The current review article will concentrate on vaginal infection (vaginitis), project
... Show More
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show More