Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising technology for a wide range of ocean monitoring applications. The UWSNs suffer from unique challenges of the underwater environment, such as dynamic and sparse network topology, which can easily lead to a partitioned network. This results in hotspot formation and the absence of the routing path from the source to the destination. Therefore, to optimize the network lifetime and limit the possibility of hotspot formation along the data transmission path, the need to plan a traffic-aware protocol is raised. In this research, we propose a traffic-aware routing protocol called PG-RES, which is predicated on the ideas of Pressure Gradient and RESistance concept. The proposed PG-RES protocol initially detects its neighboring area using a node request message to build a routing directory that includes the communication cost to each neighboring node. Then, by adjusting the routing process according to network conditions in a proactive mode, PG-RES mitigates traffic burden in the nodes along the transmission path to the sink, so the chances of hotspot occurrence are reduced in the underwater environment. The simulation results have revealed that the proposed PG-RES protocol achieves superior performance than the other techniques in terms of average energy usage, packet delivery ratio, network lifetime, and transmission delay. The PG-RES protocol demonstrated a reliable data transmission with a packet drop ratio that was 13.92% lower than EEDOR-VA and 3.66% lower than VHARD-FS. The development of this protocol aims to support real-time applications in highly isolated ocean environments, where reliable data forwarding and hotspot handling are essential for timely data transmission.
Acceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.
An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo
... Show MoreThe aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.
The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet
... Show MoreIn the current paradigms of information technology, cloud computing is the most essential kind of computer service. It satisfies the need for high-volume customers, flexible computing capabilities for a range of applications like as database archiving and business analytics, and the requirement for extra computer resources to provide a financial value for cloud providers. The purpose of this investigation is to assess the viability of doing data audits remotely inside a cloud computing setting. There includes discussion of the theory behind cloud computing and distributed storage systems, as well as the method of remote data auditing. In this research, it is mentioned to safeguard the data that is outsourced and stored in cloud serv
... Show MorePermeability data has major importance work that should be handled in all reservoir simulation studies. The importance of permeability data increases in mature oil and gas fields due to its sensitivity for the requirements of some specific improved recoveries. However, the industry has a huge source of data of air permeability measurements against little number of liquid permeability values. This is due to the relatively high cost of special core analysis.
The current study suggests a correlation to convert air permeability data that are conventionally measured during laboratory core analysis into liquid permeability. This correlation introduces a feasible estimation in cases of data loose and poorly consolidated formations, or in cas
Since the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreThis study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writ
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.