Underwater Wireless Sensor Networks (UWSNs) have emerged as a promising technology for a wide range of ocean monitoring applications. The UWSNs suffer from unique challenges of the underwater environment, such as dynamic and sparse network topology, which can easily lead to a partitioned network. This results in hotspot formation and the absence of the routing path from the source to the destination. Therefore, to optimize the network lifetime and limit the possibility of hotspot formation along the data transmission path, the need to plan a traffic-aware protocol is raised. In this research, we propose a traffic-aware routing protocol called PG-RES, which is predicated on the ideas of Pressure Gradient and RESistance concept. The proposed PG-RES protocol initially detects its neighboring area using a node request message to build a routing directory that includes the communication cost to each neighboring node. Then, by adjusting the routing process according to network conditions in a proactive mode, PG-RES mitigates traffic burden in the nodes along the transmission path to the sink, so the chances of hotspot occurrence are reduced in the underwater environment. The simulation results have revealed that the proposed PG-RES protocol achieves superior performance than the other techniques in terms of average energy usage, packet delivery ratio, network lifetime, and transmission delay. The PG-RES protocol demonstrated a reliable data transmission with a packet drop ratio that was 13.92% lower than EEDOR-VA and 3.66% lower than VHARD-FS. The development of this protocol aims to support real-time applications in highly isolated ocean environments, where reliable data forwarding and hotspot handling are essential for timely data transmission.
Today, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be int
... Show MorePotential data interpretation is significant for subsurface structure characterization. The current study is an attempt to explore the magnetic low lying between Najaf and Diwaniyah Cities, In central Iraq. It aims to understand the subsurface structures that may result from this anomaly and submit a better subsurface structural image of the region. The study area is situated in the transition zone, known as the Abu Jir Fault Zone. This tectonic boundary is an inherited basement weak zone extending towards the NW-SE direction. Gravity and magnetic data processing and enhancement techniques; Total Horizontal Gradient, Tilt Angle, Fast Sigmoid Edge Detection, Improved Logistic, and Theta Map filters highlight source boundaries and the
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
The present paper aims at evaluating the vailability quality and future horizons of potable water in the city of Shatra as a model. This is done in accordance with certain subjective and objective factors alongside the classification map of Shatra as a residential area. This system follows geographical studies specialized in urban construction. The problem of the present paper as well as the data approaching that problem have been chosen from the records of 2018. The researcher offered (919) questionnaire forms to be answered by a sample of dwellers in that area. Besides, the researcher also followed lab analysis of water samples collected from districts in the city of Shatra. GIS technology was also used to arrive at the real water shar
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.
Image of landsate-7 taken by thematic mapper was used and classified using supervised method. Results of supervised classification indicated presence of nine land cover classes. Salt-soils class shows the highest reflectance value while water bodies' class shows the lowest values. Also the results indicated that soil properties show different effects on reflectance. There was a high significant positive relation of carbonate, gypsum, electric conductivity and silt content, while there was a week positive relation with sand and negative relation with organic matter, water content, bulk density and cataion exchange capacity.