The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, temperature 46.4 °C, pressure 21 Mpa, and flowrate 27,000 m3/day which is nearly closed to suggested oily content 8.5 ppm. An artificial neural network (ANN) technique was employed in this study to estimate the oil content in the treatment process. An artificial neural network model was remarkably accurate at simulating the process under investigation. A low mean squared error (MSE) and relative error (RE) equal to 1.55 × 10−7 and 2.5, respectively, were obtained during the training phase, whilst the testing results demonstrated a high coefficient of determination (R2) equal to 0.99.
This study deals with segmenting the industrial market as an independent variable and targeting the industrial market as a dependent variable. Since the industrial sector represents one of the most important fundamental pillars to build the economies of countries and their development , the Iraqi industrial sector was chosen as a population for the study . Based on measuring the study variables , identifying them and testing the correlation and effect on each other , the study reached a group of findings:
1- Increasing the level of availability of study variables inside the companies “The study sample”.
2- There is a correlation between the independent v
... Show MoreTo evaluate the effectiveness of different microwave irradiation exposure times on the disinfection of dental stone samples immersed in different solutions, and its affect on the dimensional accuracy and surface porosity. Dental stone casts were inoculated with an isolate of Bacillus subtilis to examine the efficiency of microwave irradiation as a disinfection method while immersed in different solutions; water, 40% sodium chloride, or without immersion for different durations. Dimensional accuracy and surface porosity were also evaluated. Significant reduction in colony counts of Bacillus subtilis were observed after 5 minutes of microwave irradiation of immersed dental casts in water and NaCl solution. No evidence of growth was observed a
... Show MoreThis paper presents a numerical simulation for the combined effect of surface roughness and non-Newtonian behavior of the lubricant on the performance of misaligned journal bearing. The modified Reynolds equation to include the effect of non-Newtonian lubricant and bearing surface roughness has been formulated. The model accounts for the lubricant viscosity dependence on temperature and shear rate. In order to make a complete thermo-hydrodynamic analysis (THD) of rough surface misaligned journal bearing lubricated with non-Newtonian lubricant, the modified Reynolds equation coupled with the energy, heat conduction equations, the equation related the viscosity and temperature with appropriate boundary conditions have been solved simultane
... Show MoreAbstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreThe results of analyzing BVRI CCD photometry of the spiral galaxies NGC 7339, NGC 7537, and NGC 7541 are presented using the observations acquired with the 1.88m Kottamia telescope (Egypt). The overall structure of the galaxies is analyzed together with isophotal contour maps. The surface brightness profiles of the galaxies are decomposed to bulge and disk components by fitting a de Vaucouleurs law for the bulge and an exponential law for the disk to obtain photometric parameters for each component. The corrected total and absolute magnitudes and integrated color are also obtained and found to be close to the published values. The radial profiles of ellipticity, major-axis position angle, and color are also obtained and discussed.
Abstract
Although the rapid development in reverse engineering techniques, 3D laser scanners can be considered the modern technology used to digitize the 3D objects, but some troubles may be associate this process due to the environmental noises and limitation of the used scanners. So, in the present paper a data pre-processing algorithm has been proposed to obtain the necessary geometric features and mathematical representation of scanned object from its point cloud which obtained using 3D laser scanner (Matter and Form) through isolating the noised points. The proposed algorithm based on continuous calculations of chord angle between each adjacent pair of points in point cloud. A MATLAB program has been built t
... Show MoreThis work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
Diversity the terms and practice the organizational filed with different concepts and environment, which Iraqi environment part from them. Some organizational in Iraqi environment leave its basic oriented to agreement with the leader desire, their fore this research focus tow basic variable (organizational citizenship behavior & transparence), we supposition which is dependent to explanation the response variable (strategic leadership). The results justification in part and not justification in another part. For example the organizational citizenship behavior effect on some parte of the strategic leadership. The transparence have faraway to fly from the relation with organizational citizenship behavior and strategic leadershi
... Show More