Preferred Language
Articles
/
PhjKKJUBVTCNdQwC4ilr
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, temperature 46.4 °C, pressure 21 Mpa, and flowrate 27,000 m3/day which is nearly closed to suggested oily content 8.5 ppm. An artificial neural network (ANN) technique was employed in this study to estimate the oil content in the treatment process. An artificial neural network model was remarkably accurate at simulating the process under investigation. A low mean squared error (MSE) and relative error (RE) equal to 1.55 × 10−7 and 2.5, respectively, were obtained during the training phase, whilst the testing results demonstrated a high coefficient of determination (R2) equal to 0.99.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
Computer Model Application for Sorting and Grading Citrus Aurantium Using Image Processing and Artificial Neural Network
...Show More Authors
Abstract<p>This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
International Journal Of Multiphase Flow
Application of artificial neural network to predict slug liquid holdup
...Show More Authors

Publication Date
Sun Jun 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Oil from Eucalyptus Camadulensis Using Water Distillation Method
...Show More Authors

This work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Second International Conference On Innovations In Software Architecture And Computational Systems (isacs 2022)
Permeability estimation of Yamama formation in a Southern Iraqi oil field, case study
...Show More Authors

Permeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of PAN:Cellulose Membrane for Oil/Water Separation
...Show More Authors

In this study, we fabricated nanofiltration membranes using the electrospinning technique, employing pure PAN and a mixed matrix of PAN/HPMC. The PAN nanofibrous membranes with a concentration of 13wt% were prepared and blended with different concentrations of HPMC in the solvent N, N-Dimethylformamide (DMF). We conducted a comprehensive analysis of these membranes' surface morphology, chemical composition, wettability, and porosity and compared the results. The findings indicated that the inclusion of HPMC in the PAN membranes led to a reduction in surface porosity and fiber size. The contact angle decreased, indicating increased surface hydrophilicity, which can enhance flux and reduce fouling tendencies. Subsequently, we evaluated the e

... Show More
Scopus
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Different Methods to Predict Oil in Place in Mishrif Formation / Amara Oil Field
...Show More Authors

The reserve estimation process is continuous during the life of the field due to risk and inaccuracy that are considered an endemic problem thereby must be studied. Furthermore, the truth and properly defined hydrocarbon content can be identified just only at the field depletion. As a result, reserve estimation challenge is a function of time and available data. Reserve estimation can be divided into five types: analogy, volumetric, decline curve analysis, material balance and reservoir simulation, each of them differs from another to the kind of data required. The choice of the suitable and appropriate method relies on reservoir maturity, heterogeneity in the reservoir and data acquisition required. In this research, three types of rese

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
New Correlation for Predicting Undersaturated Oil Compressibility for Mishrif Reservoir in the Southern Iraqi Oil Fields
...Show More Authors

Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri May 05 2023
Journal Name
Environmental Science And Pollution Research
Photocatalytic degradation of ciprofloxacin by MMT/CuFe2O4 nanocomposite: characteristics, response surface methodology, and toxicity analyses
...Show More Authors

View Publication
Scopus (31)
Crossref (29)
Scopus Clarivate Crossref