The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, temperature 46.4 °C, pressure 21 Mpa, and flowrate 27,000 m3/day which is nearly closed to suggested oily content 8.5 ppm. An artificial neural network (ANN) technique was employed in this study to estimate the oil content in the treatment process. An artificial neural network model was remarkably accurate at simulating the process under investigation. A low mean squared error (MSE) and relative error (RE) equal to 1.55 × 10−7 and 2.5, respectively, were obtained during the training phase, whilst the testing results demonstrated a high coefficient of determination (R2) equal to 0.99.
Modern education incorporates strong elements of collaborative learning: activities that prompt students to collaborate on completing learning tasks. In this work we investigate the relationship between media type and student collaboration and attribution patterns during collaborative content creation. We run similarity analyses on text and video artifacts submitted by students as part of collaborative exercises in an undergraduate module. Our main finding is that the same cohort of students was significantly more likely to attribute non-original content to its sources when authoring text compared to video content and when this content is not produced by a peer student. Our preliminary results based on only two media suggest that media type
... Show MoreTrickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z
... Show MoreThis research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show MoreIn this research paper, two techniques were used to treat the drill cuttings resulting from the oil-based drilling fluid. The drill cuttings were taken from the southern Rumaila fields which prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from Rumaila oilfields with Sp.gr of 0.882 and the other from the eastern Baghdad oilfield with Sp.gr of 0.924 besides contamination levels of 10% and 15% w/w in mass. Samples were treated first with microwave with a power applied of 540 & 180 watts as well as a time of 50 minutes. It was found that the results reached below 1% w/w in mass, except for two samples they reached below 1.5% w/w in mass. Then, the sample of 1.41% w/w in mass,
... Show MoreThe aim of this study was to investigate the effect of operating variables on, the percentage of removed sludge (PSR) obtained during re-refining of 15W-40 Al-Durra spent lubricant by solvent extraction-flocculation treatment method. Binary solvents were used such as, Heavy Naphtha (H.N.): MEK (N:MEK), H.N. : n-Butanol (N:n-But), and H.N. : Iso-Butanol (N:Iso:But). The studied variables were mixing speed (300-900, rpm), mixing time (15-60, min), and operating temperature (2540, oC). This study showed that the studied operating variables have effects where, increasing the mixing time up to 45 min for H.N.: MEK, H.N.: n-Butanol and 30 min for H.N.: Iso-Butanol increased the PSR, after that percentage was decreased; increasing t
... Show MoreThis work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreThis work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re
... Show More