Recently, many materials have shown that they can be used as alternatives to chemicals materials in order to be used to improve the properties of drilling fluids. Some of these materials are banana peels and corn cobs which both are considered environmentally- friendly materials. The results of the X-ray diffraction examination have proved that the main components of these materials are cellulose and hemicellulose, which contribute greatly to the increasing of the effectiveness of these two materials. Due to their distinct composition, these two materials have improved the rheological properties (plastic viscosity and yield point) and reduced the filtration of the drilling fluids to a large extent. The addition rates used for each of the two materials (banana peels and corn cob) are 1%, 2%, 3%, 4%, 5% and 6%. As regard to banana peels, the results have shown that there is a direct correlation between the addition ratios, the increase in the rheological properties (plastic viscosity and yield point), and the decrease in filtration The corn cob has shown the same results. Also, 0.01% increase in the pH value was observed when adding a corn cob, while adding banana peels showed the opposite, as adding them led to 0.02% decrease in the pH value. Among the other properties that have been studied is density, as it has been noticed that there is no significant effect of these two materials on the density of drilling fluid. Moreover, the performance of these two materials has been compared with the PAC polymer. This research suggests that the possibility of moving towards corn cob and dried banana peels as additives for biodegradable drilling fluid. Apart from being environmentally friendly, the choice of using them is considered economically more efficient than other chemical additives. By all accounts, the above materials are an increasingly rational choice for moving forward for an environmentally friendly oil industry.
The main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative
... Show MoreThe objective of this research was to investigate the effect of replacing fat(shortening) with different percentages of tahena on the quality properties (physiochemical and sensory ) of shortened cake.The percentages of moisture,protein ,fat and ash of cake increased significantly(p<0.05) as the replacement was increased .The highest increase percentages were 10,48,5,and 90 %,respectivly, at 100% replacement .Carbohydrate,however,decreased by 10%at 100% replacement .these findings may indicate improvement of cake nutritional value.Standing height,as an indicator of cake volume, also increased significantly by 4% at the 50% replacement then it decreased by 4% 100% replacement level. Basic formula (control) has signific
... Show MoreDuring 9–10 September 2011 the ACE, Wind, and SOHO spacecraft measured the complex interaction between an interplanetary coronal mass ejection (ICME) and a corotating interaction region (CIR) associated with the heliospheric sector boundary. Except for a few short periods, the suprathermal electrons are unidirectional, suggesting that the ICME magnetic field has opened through interchange reconnection. Signatures of interaction are distributed throughout the event suggesting that the structures have become entangled or embedded. Since the ICME speed is relatively low, the strong forward shock must be caused by the ICME‐CIR interaction. Other interesting features are the upstream heating flux disc
The aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show MoreNanocomposite was prepared using unsaturated polyester (UP) resin as a matrix and graphene nanoparticles as a reinforcement material in six percentage weights (0, 0.1, 0.2, 0.3, 1 and 1.5%). Mechanical, calorimetric and thermal studies were performed on the (UP) resin/graphene nanocomposite. All tests showed a clear improvement of all mechanical properties examined (hardness, flexural strength (F.S), impact strength (I.S) and tensile strength (T.S)) with increasing graphene percentage. In addition, the temperature of glass transition and thermal conductivity of this composite increased with increasing graphene content.
This study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreThe performance of asphalt pavements is crucial due to heavy traffic loads from civil and industrial developments. Various additives and modifiers are used in flexible roads to improve their resistance to deterioration caused by climatic changes. From this context, modifying the asphalt binder with polymers is popular in asphalt pavement construction. The present research investigates the effect of Polyethylene (PE) polymers in powder form on the characteristics of asphalt mixtures since these polymers are composed of hydrocarbons. It is similar to asphalt binders, making them very effective in enhancing the performance of neat asphalt produced from the oil refinery. To confirm this, two types of PE, High-Density PE (HDPE) and Low-Density P
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.