Background. Gene polymorphisms affect etanercept’s pharmacokinetics, pharmacodynamics, and side effects. This effect is evidenced by the extensive genetic variation in the drug’s targets. Objectives. This study aims to find the association between different genotypes of the promoter region of the TNF-α gene at -308G/A(rs1800629), -857C/T(rs1799724), -863 C/A(rs1800630), -1031 T/C (rs1799964), -806 C/T (rs4248158) and -376 G/A (rs1800750) and the side effects of ETN that occurred to Iraqi RA patients. Method. The trial included patients with rheumatoid arthritis who had been using ETN for at least six months. The participants were from the Baghdad Teaching Hospital Rheumatology Unit. The PCR was sequenced to determine the polymorphism in the TNF- promoter region at sites -308 G/A (rs1800629), -857 C/T (rs1799724), -863 C/A (rs1800630), -1031 T/C (rs1799964), and -376 G/A (rs4248158) (rs1800750). The link between the genetic variation at these loci and the etanercept’s most frequent adverse effect was then investigated. Results. The only genotype of (-376 G/A) significantly related to an increased risk of upper respiratory tract infection is the GG genotype, according to the results of this study. However, genotypes for the remaining SNPs did not demonstrate a statistically significant association between ETN and an increased risk of upper respiratory tract infections, injection site response, or skin rash in patients. Conclusion. This study revealed that only the GG genotype of (-376 G/A) was significantly associated with an elevated risk of upper respiratory tract infection.
In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreIn this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be ded
... Show MoreThe main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
Background: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More