As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficient route planning algorithm to attain a globally optimal vehicle control is still a challenge that needs to be solved, especially when the unique preferences of drivers are considered. The aim of this paper is to establish an accident management system that makes use of vehicular ad hoc networks coupled with systems that employ cellular technology in public transport. This system ensures the possibility of real-time communication among vehicles, ambulances, hospitals, roadside units, and central servers. In addition, the accident management system is able to lessen the amount of time required to alert an ambulance that it is required at an accident scene by using a multihop optimal forwarding algorithm. Moreover, an optimal route planning algorithm (ORPA) is proposed in this system to improve the aggregate spatial use of a road network, at the same time bringing down the travel cost of operating a vehicle. This can reduce the incidence of vehicles being stuck on congested roads. Simulations are performed to evaluate ORPA, and the results are compared with existing algorithms. The evaluation results provided evidence that ORPA outperformed others in terms of average ambulance speed and travelling time. Finally, our system makes it easier for ambulance to quickly make their way through traffic congestion so that the chance of saving lives is increased.
Rotating fan shaft system was investigated experimentally and theoretically to study its dynamic performance. The type of oil used for the bearing was taken in consideration during the experimental program .Three types of oil were used, SAE 40, SAE 50 and degraded oil. During the experiments, the fan blades stagger angle was changed through angles (20˚, 30˚, 40˚, and 50˚). The shaft rotational speed also changed in the range of (0-3000 rpm). All these parameters have investigated for two cases (balanced and unbalanced fan). The performance parameters of the fan were found experimentally by measuring the fan, volume flow rate, Reynolds and Strouhal numbers, efficiency and pressure head. Analytical part was also represented to prepare
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreThis study aims to highlight the role of financial control in the development of government performance through the use of "GFS" system and its application in the service of government units, which will help them in how to use financial resources efficiently through the quality of accounting information provided by this system in the financial statements that reflect the predictability in that fiscal policy of the state through government programs and activities fee as well as to identify weaknesses and address them quickly in order to avoid wastage and loss of public money, which leads to the possibility of utilization of available financial resources of the state to effectively and efficiently, has been reached that the failure of gove
... Show MoreThe traffic congestion caused by the increase in the number of vehicles in the cities as a result of the increase in the population and the density of construction requires the provision of appropriate infrastructure and the provision of transport systems and logistics services that meet the needs of the population to meet the many challenges now and in the future by introducing various modes of transport , In accordance with integrated plans such as the use of (pedestrian friendly environments, bicycles and their own paths, light rail, metro, express bus, as well as public transport buses and others), through the development of Projects High-level roads, such as the annual and major roads, etc., and integrated with the urban planning of
... Show MoreThe study of the characteristics of the heritage fabric is one of the important things in studies of conservation and rehabilitative use. There are three main elements of rehabilitation and they are considered the basis for achieving the rehabilitation process and these elements are (development, sustainability, participation) and that the first item addressed in the research is heritage and urban fabric in heritage areas where characteristics have been studied And a problem, while the second term is rehabilitation, where the concept of rehabilitation, the types and causes of the process of rehabilitation and the benefits and qualifications that affect the urban fabric that are represented (social, economic, religious and political) were
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.