Silicon (Si)-based materials are sought in different engineering applications including Civil, Mechanical, Chemical, Materials, Energy and Minerals engineering. Silicon and Silicon dioxide are processed extensively in the industries in granular form, for example to develop durable concrete, shock and fracture resistant materials, biological, optical, mechanical and electronic devices which offer significant advantages over existing technologies. Here we focus on the constitutive behaviour of Si-based granular materials under mechanical shearing. In the recent times, it is widely recognised in the literature that the microscopic origin of shear strength in granular assemblies are associated with their ability to establish anisotropic networks (fabrics) comprising strong-force transmitting inter-particle contacts under shear loading. Strong contacts pertain to the relatively small number of contacts carrying greater than the average normal contact force. However, information on how such fabrics evolve in Si-based assemblies under mechanical loading, and their link to bulk shear strength of such assemblies are scarce in the literature. Using discrete element method (DEM), here we present results on how Si-based granular assemblies develop shear strength and their internal fabric structures under bi-axial quasi-static compression loading. Based on the analysis, a simple constitutive relation is presented for the bulk shear strength of the Si-based assemblies relating with their internal fabric anisotropy of the heavily loaded contacts. These findings could help to develop structure-processing property relations of Si-based materials in future, which originate at the microscale.
The growing water demand has raised serious concerns about the future of irrigated agriculture in many parts all over the world, changing environmental conditions and shortage of water (especially in Iraq) have led to the need for a new system that efficiently manages the irrigation of crops. With the increasing population growing at a rapid pace, traditional agriculture will have a tough time meeting future food demands. Water availability and conservation are major concerns for farmers. The configuration of the smart irrigation system was designed based on data specific to the parameters concerning the characteristics of the plant and the properties of soil which are measured once i
An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to
... Show MoreElectromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreHomomorphic encryption became popular and powerful cryptographic primitive for various cloud computing applications. In the recent decades several developments has been made. Few schemes based on coding theory have been proposed but none of them support unlimited operations with security. We propose a modified Reed-Muller Code based symmetric key fully homomorphic encryption to improve its security by using message expansion technique. Message expansion with prepended random fixed length string provides one-to-many mapping between message and codeword, thus one-to many mapping between plaintext and ciphertext. The proposed scheme supports both (MOD 2) additive and multiplication operations unlimitedly. We make an effort to prove
... Show MoreWith growing global demand for hydrocarbons and decreasing conventional reserves, the gas industry is shifting its focus in the direction of unconventional reservoirs. Tight gas reservoirs have typically been deemed uneconomical due to their low permeability which is understood to be below 0.1mD, requiring advanced drilling techniques and stimulation to enhance hydrocarbons. However, the first step in determining the economic viability of the reservoir is to see how much gas is initially in place. Numerical simulation has been regarded across the industry as the most accurate form of gas estimation, however, is extremely costly and time consuming. The aim of this study is to provide a framework for a simple analytical method to esti
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show MoreThe study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show More