This study aims to evaluate the biocompatibility of a novel filler material intended to improve the longevity of polymer systems used in prosthetics in respect of cytotoxicity and skin irritation. RTV50F silicone elastomer incorporated with various percentages of hexagonal boron nitride (H-BN) (0.1, 0.3, 0.5, 0.7, and 1 wt%) have been tested. Silicone without H-BN was utilized as the control for comparison. The in vitro cytotoxicity test includes specimens (n=18) with 10 mm in diameter and 2 mm in thickness applied directly to the normal human fibroblast cell line (NHF) and incubated for 72 hours, then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability. The skin irritation test was conducted in vivo, in which specimens (n=12) with 25 mm × 25 mm dimensions were applied on the back of 5 different rabbits for 4 hours, then the skin response was evaluated after 24, 48, and 72 hours. The acquired in vitro data were statically analyzed using one-way ANOVA and post-hoc Tukey’s tests with GraphPad Prism 8, where P-value < 0.05 was considered statistically significant. The H-BN powder and silicone specimens were studied via field emission scanning electron microscopy (FE-SEM). The results revealed a negligible effect of maxillofacial silicone on cell viability after 72 hours of incubation, only one group (1wt%) showed a significant difference compared to the control group but the toxicity percentage didn’t exceed 30% of cell viability and there was no skin irritation during the in vivo test.
A simple UV spectrophotometric differential derivatization method was performed for the simultaneous quantification of three aromatic amino acids of tryptophan, the polar tyrosine and phenylalanine TRP, TYR and PHE respectively. The avoidance of the time and reagents consuming steps of sample preparation or analyze separation from its bulk of interferences made the approach environmentally benign, sustainable and green. The linear calibration curves of differential second derivative were built at the optimum wavelength for each analyze (218.9, 236.1 and 222.5 nm) for PHE, TRP and TYR respectively. Quantification for each analyze was in the concentration range of (1.0– 45, 0.1–20.0 and 1.0– 50.0 μg/ml) at replicates of (n=3) with a re
... Show MorePharmaceuticals are widely distributed in different applications and also released into the environment. Adsorption of Ciprofloxacin HCl (CIPH) on Porcelinaite was studied at ambient conditions. The adsorption isotherms can be well described using the Freundlich and Temkin equations. The pH of the solution influences significantly the adsorption capacity of Porcelinaite, the adsorption of CIPH increased from the initial pH 1.3 and then decreased over the pH rang of 3.8-9. The adsorption is sensitive to the change in ionic Strength, which indicate that electrostatic attraction is a significant mechanism for sorption process. The enthalpy change (ΔH) for the adsorption of CIPH onto Porcelinaite signifies an endothermic adsorption. The ΔG va
... Show MoreThe present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing
BOOK REVIEW
Lactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical c
... Show MoreOptical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
Simple, sensitive and accurate two methods were described for the determination of terazosin. The spectrophotometric method (A) is based on measuring the spectral absorption of the ion-pair complex formed between terazosin with eosin Y in the acetate buffer medium pH 3 at 545 nm. Method (B) is based on the quantitative quenching effect of terazosin on the native fluorescence of Eosin Y at the pH 3. The quenching of the fluorescence of Eosin Y was measured at 556 nm after excitation at 345 nm. The two methods obeyed Beer’s law over the concentration ranges of 0.1-8 and 0.05-7 µg/mL for method A and B respectively. Both methods succeeded in the determination of terazosin in its tablets
Silymarin (SM) is a plant extract obtained from Silybum marianum( milk thistle) . It is class II type drug according to Biopharmaceutics Classification System with low bioavailability due to its low solubility.
Micro/nanonization during crystallization, surface modification and crystal structure modification may improve the dissolution rate of poorly water-soluble drugs.
The aim of this study was to increase the water solubility and dissolution rate of SM by in-situ micronization using solvent change either by stirring or ultrasonic method. Stabilizers like Gelatin, PVP-K30, HPMC15, Pulullan were used to stabilize the prepared ultrafine crystals. Effect of type and concentration of hydrophilic polymer, solv
... Show More