The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volume fractions for various types for Nano particle materials on the fatigue behavior for composite materials, and preparing the fatigue samples and tested using the fatigue apparatus. The Nano particles used were (Nano SiO2 and Nano Al2O3) materials with volume fraction as (0% to 2%), for each type of Nano material used. The artificial neural network technique was adopted to have a verification for the experimental results and calculating the fatigue life and strength for composite materials, with the addition of nanoparticles and then, a comparison of the results was achieved. The comparison of the results indicate a maximum error between results calculated by two technique did not exceeded about (1%). Then, the results calculated showed that the mechanical properties and fatigue life and strength increase with reinforcement with Nano particle. Also, the results showed that the modified for fatigue limits with materials by (Nano SiO2) Nano particle was more than the modified for fatigue limits for materials reinforcement with other materials. Finally, it can be concluded that the modified for fatigue strength, by reinforcement with (Nano SiO2), leads to 60% more than fatigue limit without Nano additive.
Background In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
In the present work, Uranium (238U), Thorium (232Th) and Potassium (40K) specific activity concentration in (Bq/kg) was measured in five different types for wheat flours that are available in the Iraqi markets. The gamma spectrometry method with an NaI (Tl) detector has been used for radiometric measurements. Calculations of radium equivalent activity, annual effective dose equivalent, external hazard index (Hex), internal hazard index (Hin), representing gamma index and gamma dose rate in all flour samples were 17.98132 Bq/kg, 0.0100334, 0.04502, 0.04857, 0.06872, 0.125883 and 8.181244 respectively. It is found that the average of specific activity concentration of wheat flour sam
... Show MoreExperiment was conducted in Baghdad, three factor were used in this research included Two types of Plows included moldboard and disk plows which represented the main plot, Three forward speeds of the tillage was the second factor included 1.85, 3.75 and 5.62 km / h which represented sup plot , and Three levels of Soil Moisture was third factor included 21, 18 and 14 % in all of Vertical and Lateral Plowing Deviation, Practical and specific productivity, actual time for plowing one donam and appearance (goodness) of Tillage represented by the number of clods > 10 cm in silt clay loam soil with depth 22 cm were studied. the experiment was used Split – split plot design under randomized complete block design with three replications and Le
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
This study aimed to knowledge of the effects of the Traditional ore upon the structure of sculpture form, as well as to knowledge of new materials that was used for the contemporary sculpture. This study included four chapter: first chapter was specialized for methodical frame. such as problem of research. that it was abstracted by question about the reason that lead the sculptor to search from new raw to carry out his sculpture works? As well as the important of research and its limits was that define between year 1950 up to 2000. The second chapter included the theoretical field and previous studies, that formed from three researches, such as the fist about the materials, as it was considered master element at the sculpture formal. the
... Show MoreBackground: This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. Material and Methods: Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesiv
... Show MoreTo decrease the dependency of producing high octane number gasoline on the catalytic processes in petroleum refineries and to increase the gasoline pool, the effect of adding a suggested formula of composite blending octane number enhancer to motor gasoline composed of a mixture of oxygenated materials (ethanol and ether) and aromatic materials (toluene and xylene) was investigated by design of experiments made by Mini Tab 15 statistical software. The original gasoline before addition of the octane number blending enhancer has a value of (79) research octane number (RON). The design of experiments which study the optimum volumetric percentages of the four variables, ethanol, toluene, and ether and xylene materials leads
... Show MoreThe aim of this work was to capture solar radiation and convert it into solar thermal energy by using a storage material and the heat transfer fluid like oil and water and comparison between them, we used the evacuated tube as a receiver for solar radiation, The results showed that the oil better than water as storage material and the heat transfer fluid and the effective thermal conductivity material and good for power level, rates and durations of charge and discharge cycles.
The integration of AI technologies is revolutionizing various aspects of the apparel and textile industry, from design and manufacturing to customer experience and sustainability. Through the use of artificial intelligence algorithms, workers in the apparel and textile industry can take advantage of a wealth of opportunities for innovation, efficiency and creativity.
The research aims to display the enormous potential of artificial intelligence in the clothing and textile industry through published articles related to the title of the research using the Google Scholar search engine. The research contributes to the development of the cultural thought of researchers, designers, merchants and the consumer with the importance of integ