The prostheses sockets use normally composite materials which means that their applications may be related with the human body. Therefore, it was very necessary to improve the mechanical properties of these materials. The prosthetic sockets are subjected to varying stresses in gait cycle scenario which may cause a fatigue damage. Therefore, it is necessary or this work to modify the fatigue behavior of the materials used for manufacturing the prostheses sockets. In this work, different Nano particle materials are used to modify the mechanical properties of the composite materials, and increase the fatigue strength. By using an experimental technique, the effect of using different volume fractions for various types for Nano particle materials on the fatigue behavior for composite materials, and preparing the fatigue samples and tested using the fatigue apparatus. The Nano particles used were (Nano SiO2 and Nano Al2O3) materials with volume fraction as (0% to 2%), for each type of Nano material used. The artificial neural network technique was adopted to have a verification for the experimental results and calculating the fatigue life and strength for composite materials, with the addition of nanoparticles and then, a comparison of the results was achieved. The comparison of the results indicate a maximum error between results calculated by two technique did not exceeded about (1%). Then, the results calculated showed that the mechanical properties and fatigue life and strength increase with reinforcement with Nano particle. Also, the results showed that the modified for fatigue limits with materials by (Nano SiO2) Nano particle was more than the modified for fatigue limits for materials reinforcement with other materials. Finally, it can be concluded that the modified for fatigue strength, by reinforcement with (Nano SiO2), leads to 60% more than fatigue limit without Nano additive.
The traction property is one of the important mechanical properties, especially the rotary parts which are subjected to constant and variable loads There are many methods used to improve this property, and the shoot peening by metal balls is considered the most critical one. the study focuses on this characteristic of steel CK35 used in many engineering applications as the rotating shafts and railway This study shows that the fatigue strength is improved by14% after shoot peening with metal balls. The study includs the rehabilitation of damaged samples as a result of fatigue corrosion. The standard solution adopted was 36% MgCl2 with a 30 days immersion period. These samples has been improved by 6% after it decreased by18% d
... Show MoreIn this study was undertaken frish fish such as Bigeye Ilisha megaloptera, Nematalos nasus, Suboor Hilsha ilisha and Carp Cyprinus carpio. they were purchased from local marketes in Basrah, Oil was extracted by a solvent extraction method on low temperature. And the level of oil obtiened about (6.08; 10.72; 13.52 and 5.61)% for Bigeye, Jaffout, Suboor and Carp. the Crud oils were compared with vegetable oil (olive oil) and animal fat (tial fat mutton).
The extracted oil from fresh complete fishs with compared oils intraed on pharmacological system through packed in capsul with and with out garlic`s extract. this system analysis with chemical tests.
Results were analyzed statistically by using the SPSS program with using (CRD)
The synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Nano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreMost researchers concentrate their studies on the design, stress and pressure distributions of the prosthetic socket. A little attention is considered for the stiffness of the various materials of the prosthetic sockets. Prosthetic laminated sockets in Iraq are costly to be manufactured while polypropylene socket is relatively cheap in comparing with the laminates.
Experimental study is conducted to compare the stiffness of five prosthetic sockets made of different materials. Compression, three point flexural and tensile tests are implemented by the Testometric machine. The laminate sockets give better results in compression than polypropylene. Polypropylene gives good results in bending compared with the laminate sockets. When t
... Show MoreIn this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zin
... Show MoreA numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro
Sludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show More