Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, autocorrelation, and log energy. A modified version of fuzzy C-Means is then used to cluster speech segments into three clusters; two clusters for voice and one for unvoiced. After that, three feed forward neural networks are trained to adjust their weights, in which each network represents one cluster. To make the final decision regarding the class type of a given speech segment, the membership degrees of this segment in all clusters along with neural networks' decisions are given to a defuzzification step which finally gives the class type of that segment. The proposed FN-AVAD is tested on the public multimodal emotion database, Surrey AudioVisual Expressed Emotion (SAVEE), and the error rate was 2.08%. The achieved results are comparable to the results achieved by the current published works in the literature.
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
Background: Stroke is an acute neurologic injury and represents the 2nd leading cause of mortality worldwide, and also the most leading cause of acquired disability and morbidity in adults.
Objective: Effect and association between stroke and risk factors.
Type of the study: A retrospective study.
Methods: The study conducted on 312 patients in 2016, all data were collected from patients’ files from the emergency unit, which included basic demographic and disease characteristic, co morbid diseases, risk factors, final diagnosis.
Results: both previous stroke, ischemic heart disease was strong predictor of new
... Show MoreNeuro-ophthalmic disorders are often documented individually for each illness, with little data available on their overall incidence and pattern. The overall incidence of neuro-ophthalmic illnesses in Iraq is still not recorded. This study aimed to evaluate the clinical, demographic, and etiological features of patients seeking consultation at an Iraqi neuro-ophthalmology clinic. A prospective cross-sectional observational research was conducted at the Janna Ophthalmic Center in Baghdad, Iraq. The center serves a diverse patient population from various governorates. All newly diagnosed patients with neuro-ophthalmic disorders who visited the neuro-ophthalmological clinic, regardless of gender or age group, were included. The neuro-ophthalmo
... Show MoreFuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .
In this research, silver nanoparticles (AgNPs) were manufactured using aqueous extract of mushroom Pleurotus ostreatus. Anticancer potential of AgNPs was investigated versus human breast cancer cell line (MCF-7). Cytotoxic response was assessed by MTT assay. AgNPs showed inhibition effect at the following concentrations 12.5, 25, 50, 100 and 200 µg/ml versus MCF-7 cell line, and all treatments had a positive result. The MCF-7 cells were inhibited up to 85.14 % at the concentration 200 μg/ml of AgNPs which reduced cells viability to 14.86%, while 12.5 μg/ml of AgNPs caused 24.23% cells inhibition with reduction of cells viability to 75.77%.
Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy for kidney stone. Shock waves from outside the body frame are centered at a kidney stone inflicting the stone to fragment. The success of the (ESWL) treatment is based on some variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the success of remedy by this method is so important for professionals to make a decision to continue using (ESWL) or tousing another remedy technique. In this study, a prediction system for (ESWL) treatment by used three techniques of mixing classifiers, which is Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested Combined Classi
... Show MoreThe Qur'an is an inexhaustible source for researchers, and all of them find a rich material for its research, and no wonder in it is the book of the greatest Arabic. Quranic research has been an attempt to extract the secret in the miracle of the Koran, and not the Quranic miracle is limited to the word and its meaning, but that the miracle extends to include every sound in motion or silent; the sound performance of the Quranic text increases the meaning of beauty and earns the word heartbeat, Souls; and this may be due to the beauty of voice in the performance and harmony between sounds and words, and harmony between the exits and descriptions, or the tides of the tides,
Based on the above and to show the miraculous aspects of the Qu
In this research was to use the method of classic dynamic programming (CDP) and the method of fuzzy dynamic programming (FDP) to controlling the inventory in N periods and only one substance ,in order to minimize the total cost and determining the required quantity in warehouse rusafa principal of the ministry of commerce . A comparison was made between the two techniques، We found that the value of fuzzy total cost is less than that the value of classic total cost