Preferred Language
Articles
/
OxbBHYcBVTCNdQwCvzjB
Assessing Pullout Resistance of Earth Reinforced Embankment Model
...Show More Authors

- The sandy soil with high gypsum content (usually referred to as gypseous soil) covers vast area in south, east, middle and west regions of Iraq, such soil possess a type of cohesive forces when attached with optimum amount of water, then compacted and allowed to cure, but losses its strength when flooded with water again. Much work on earth reinforcement was published which concentrate on the gain in bearing capacity in the reinforced layer using different types of cohesive or cohesion less soil and various types of reinforcement such as plastic, metal, grids, and synthetic textile. Little attention was paid to there enforce gypseous soil. The objective of this work is to study the interaction between such soil and reinforcement strips and determine the frictional stress between there enforcement strips and gypseous soil at its cured condition and at the asphalt stabilized condition through the pullout technique. This work presents a laboratory investigation on earth reinforced embankment model box. The box was filled with gypseous soil compacted in layers to a predetermined density. Aluminum and plastic reinforcement strips of variable geometric types were embedded at each layer. After compaction of each layer, and filling the box, the strips were subjected to pullout test to determine the frictional resistance between the soil and the strips at different spacing in the vertical and horizontal planes. The same procedure was repeated on another box after subjecting the embankment to curing for 10 days. A third embankment model was constructed using asphalt stabilized gypseous soil. Finally, the frictional behavior of the models was evaluated and the reinforcing strips behavior and capabilities were determined

Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Rehabilitation of Reinforced Concrete Deep Beam by Epoxy Resin
...Show More Authors

This investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 03 2012
Journal Name
Baghdad Science Journal
Mechanical properties of carbon nanotube reinforced Epoxy Resin composites
...Show More Authors

Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Optik
Assessing the optoelectronic performance of d-orbital doped cubic HfO2: The case of W, Nb, and Mo
...Show More Authors

This contribution provides an atomistic understanding into the impact of W, Nb, and Mo co-substitution at Hf-site of cubic HfO2 lattice to produce Hf1−xTMxO2 system at x = 25%. The calculations have been performed under the framework of density functional theory supported by Habbured parameter (DFT+U). Structural analysis demonstrates that the recorded lattice constants is in good coherence with the previously published results. For the lattice parameters, contraction by 1.33% comparing with the host system has been reported. Furthermore, the doping effect of TM on the band gap leads to its reduction in the resulting Hf0.75TM0.25O2 configurations. The partial density of states (PDOS) indicate that hybridization through localized electroni

... Show More
Publication Date
Wed Aug 01 2012
Journal Name
International Journal Of Geographical Information Science
Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources
...Show More Authors

View Publication
Scopus (64)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Assessing the Influence of Moisture Damage under Repeated Load on Multilayer Interface Bond Strength of Asphalt Concrete
...Show More Authors

The performance and durability of the asphalt pavement structure mainly depend on the strength of the bonding between the layers. Such a bond is achieved through the use of an adhesive material (tack coat) to bond the asphalt layers. The main objective of this study is to evaluate the effect of moisture in conjunction with repeated traffic loads on the strength of the bonding between asphalt layers using two types of tack coats with different application rates. Using the nominal maximum size of aggregate (NMAS), the layers were graded (25/19) and (19/9.5) mm. The slabs of multilayer asphalt concrete were prepared using a roller compactor using two types of tack coats to bond between layers, namely rapid curing cut back a

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Optik
Assessing the optoelectronic performance of d-orbital doped cubic HfO2: The case of W, Nb, and Mo
...Show More Authors

This contribution provides an atomistic understanding into the impact of W, Nb, and Mo co-substitution at Hf-site of cubic HfO2 lattice to produce Hf1−xTMxO2 system at x = 25%. The calculations have been performed under the framework of density functional theory supported by Habbured parameter (DFT+U). Structural analysis demonstrates that the recorded lattice constants is in good coherence with the previously published results. For the lattice parameters, contraction by 1.33% comparing with the host system has been reported. Furthermore, the doping effect of TM on the band gap leads to its reduction in the resulting Hf0.75TM0.25O2 configurations. The partial density of states (PDOS) indicate that hybridization through localized electroni

... Show More
View Publication
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Mon Mar 27 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Synthesis of New Cephalosporins of Expected Improved Activity and Resistance Against -Lactamases
...Show More Authors

The development of new cephalosporins with improved activity against resistant microbes, such as, MRSA (methicillin resistant Staph. aureus), P. aeruginosa, is of high potential. Chemical synthesis of two new series of thiadiazole linked to cysteine (series 1) and cephalosporins containing thiadiazole linked to cysteine through disulfide bond (series 2) were achieved. The chemical structures of the synthesized compounds were confirmed using spectral (FT-IR, 1H-NMR) and elemental microanalysis. The incorporation of privileged chemical moieties, such as, thiadiazole, Schiff base, cysteine and sulfonamide, has been found to have great contribution to the antimicrobial activities. Compounds of series 1 (1

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Effect of Magnesium Addition on Corrosion Resistance of Aluminum -17%Silicon Alloy
...Show More Authors

The electrochemical behavior of Al-17%Si alloy is investigated in 3.5wt% NaCl solution. Many alloys with addition of the different wt% magnesium metal of  1wt%, 2%, 3wt% ,4.5wt% ,and 9wt% were prepared by gravity die casting . The microstructures of prepared alloys were examined by optical and SEM microscopes. Corrosion behavior was investigated by using potentiostat instrument under static potentials test and corrosion current was recorded to determine corrosion resistance of all prepared samples. It was found that the addition of Mg metal improves the corrosion resistance of Al-17%Si alloy in 3.5%NaCl solution. The alloy containing 1%Mg shows less corrosion rate than the others while the alloys containing 4.5%Mg, 9%Mg content have

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Biochemical And Cellular Archives
DETECTION OF BACTERIAL INFECTIONS AND THEIR RESISTANCE IN BURN WOUND OF SKIN
...Show More Authors

Scopus