At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance penalty. Due to the massive calculations required by conventional public-key and secret encryption methods, information security in this limited context calls for light encryption techniques. In many applications involving sensor networks, security is a crucial concern. On the basis of traditional cryptography, a number of security procedures are created for wireless sensor networks. Some symmetric-key encryption techniques used in sensor network setups include AES, RC5, SkipJack, and XXTEA. These algorithms do, however, have several flaws of their own, including being susceptible to chosen-plaintext assault, brute force attack, and computational complexity.
To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo
... Show MoreThis study was set out to investigate factors affecting labor productivity on construction in the north of Iraq (Kurdistan) and to rank all the factors based on engineers, contractors, and designer’s opinions. 76 factors were analyzed based on previous literature and a pilot study. Next, by using online Google Form, a questionnaire form was created and sent to people who have experience in the construction industry. Afterward, the questionnaire form was sent to targeted people by email and social media apps. Factors were divided into nine groups “Management, Technical and Technology, Human and Workforce, Leadership, Motivation, Safety, Time, Material and Equipment, and External”. However, 202 respondents participated in this study,
... Show MoreThis research is concerned with a new type of ferrocement characterized by its lower density and enhanced thermal insulation. Lightweight ferrocement plates have many advantages, low weight, low cost, thermal insulation, environmental conservation. This work contain two group experimental : first different of layer ferrocement, second different of ratio aggregate to cement. The experiments were made to determined the optimum proportion of cement and lightweight aggregate (recycle thermestone ). A low W/C ratio of 0.4 was used with super plasticizer conforming to ASTM 494 Type G. The compressive strength of the mortar mixes is 20-25 MPa. The work also involved the determination of thermal properties .Thermal conductivity value of thi
... Show MoreAdministrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee
<p>In the mobile phone system, it is highly desirable to estimate the loss of the track not only to improve performance but also to achieve an accurate estimate of financial feasibility; the inaccurate estimate of track loss either leads to performance degradation or increased cost. Various models have been introduced to accurately estimate the path loss. One of these models is the Okomura / Hata model, which is recommended for estimating path loss in cellular systems that use micro cells. This system is suitable for use in a variety of environments. This study examines the comparison of path loss models for statistical analysis derived from experimental data collected in urban and suburban areas at frequencies of 150-1500 MHz
... Show MoreGenetic algorithms (GA) are a helpful instrument for planning and controlling the activities of a project. It is based on the technique of survival of the fittest and natural selection. GA has been used in different sectors of construction and building however that is rarely documented. This research aimed to examine the utilisation of genetic algorithms in construction project management. For this purpose, the research focused on the benefits and challenges of genetic algorithms, and the extent to which genetic algorithms is utilised in construction project management. Results showed that GA provides an ability of generating near optimal solutions which can be adopted to reduce complexity in project management and resolve difficult problem
... Show MoreThe main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show More