: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in ethanol (PLAL) technique through irradiation with a Nd:YAG laser pulses TiO2 target that is sunk in methanol using 400 mJ of laser energy. It has been studied the structural, optical and morphological of TiO2NPs.It has been detected that through XRD measurement , (TiO2) NPs have been Tetragonal crystal structure. While with AFM measurements, it has been realized that the synthesized TiO2 particles are spherical with an average particle size in the (82 nm) range. It has been determined that the energy band gap of TiO2 NPs from optical properties and set to be in (5eV) range .The transmittance and reflectance spectra have determined the TiO2 NPs optical constants. It was reported the effectiveness of TiO2 NPs expansion on the PS Photodetector properties which exposes the benefits in (Al/PS/Si/Al). The built-in tension values depend on the etching time current density and laser flounce. Al/TiO2/PS/Si/Al photo-detector heterojunction have two response peaks that are situated at 350 nm and (700 -800nm) with max sensitivity ≈ 0.7 A/W. The maximum given detectivity is 9.38at ≈ 780 nm wavelength.
In this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 2
... Show MoreIn this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66
... Show MoreNuclear medicine is important for both diagnosis and treatment. The most common treatment for diseases is radiation therapy used against cancer. The radiation intensity of the treatment is often less than its ability to cause damage, so radiation must be carefully controlled. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with ovary tissue were calculated using Beth-Bloch equation, Zeigler’s formula and SRIM Software also the range and Liner Energy Transfer (LET) and ovary thickness as well as dose and dose equivalent for this particle were calculated by using Matlab language for (0.01-200) MeV alpha energy.
As modern radiotherapy technology advances, radiation dose and dose distribution have improved significantly. As part of a natural evolution, there has recently been renewed interest in therapy, particularly in the use of heavy charged particles, because these types of radiation serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Breast Tissue were calculated by using Beth-Bloch equation, Zeigler's formula and SRIM software, also the Range and Liner Energy Transfer (LET) and Breast Thickness As well as Dose and Dose equivalent for this particle were calculated by using Mat lab language for (0.01-200) MeV alpha ene
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreCrystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MoreUsing photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show More