Scleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved the transverse flexural strength, microhardness, and surface roughness compared with other percentages. The specimens in the main study were divided into (3) main groups, (50) specimens without additives (control group A), (50) experimental specimens (with 0.01wt% AgNPs group B), and (50) experimental specimens (with 0.02 wt% AgNPs group C). Each group was subdivided into (5) equal subgroups depending on the tests used. The data were studied using one way ANOVA and post hoc LSD test. At 0.01 wt% AgNPs addition, the mean values of transverse flexural strength insignificantly increased (p> 0.05), and those of impact strength and shear bond strength significantly increased (p< 0.05) compared with those of the control group. At 0.02 wt% AgNPs addition (group C), the mean value of transverse flexural strength significantly increased (p< 0.05), that of impact strength insignificantly increased (p> 0.05), and that of shear bond strength increased with high significance (p< 0.01) compared with those of the control group. Group C showed insignificant increase in the mean values of transverse flexural strength, impact strength, and shear bond strength (p. 0.05) compared with group B. The scleral acrylic resin added with 0.01 and 0.02 wt% AgNPs showed insignificant increase in microhardness and insignificant decrease in surface roughness. The addition of AgNPs powder in both concentrations improved the mechanical properties of scleral acrylic resin used for ocular prostheses.
Background: Alginate impression material is the irreversible hydrocolloid material that is widely used in dentistry. The contact time between alginate and gypsum cast could have a detrimental effect on the properties of the gypsum cast. The objective of this study is to evaluate the impact of various contact time intervals of Alginate impressions & type III dental stone on surface properties of stone cast. Materials and Methods: Time intervals tested were 1hour, 6 hours and 9 hours. Surface properties of stone cast evaluated were surface detail reproduction, hardness and roughness. Surface detail reproduction was determined using cylindrical brass test block in accordance with ISO 1563. Surface roughness was measured by profilometer
... Show MoreThe MTX was converted to MTX nanoparticles by the modified method based on changing the pH gradually . For the first time MTX NPs+Meropenem complex were prepared and evaluated as a potential tool to overcome antimicrobial resistance and to improve pharmacokinetics of the drug, the results showed that the antibacterial activity of complex (MTX NPs plus MEM) has increased (from 1( µg/ml) to >0.5( µg/ml) for p1 , from 2( µg/ml) to 1( µg/ml) for p10 and from 8( µg/ml) to 4( µg/ml) for p48).
Acid treatment is a widely used stimulation technique in the petroleum industry. Matrix acidizing is regarded as an effective and efficient acidizing technique for carbonate formations that leads to increase the fracture propagation, repair formation damage, and increase the permeability of carbonate rocks. Generally, the injected acid dissolves into the rock minerals and generates wormholes that modify the rock structure and enhance hydrocarbon production. However, one of the key issues is the associated degradation in the mechanical properties of carbonate rocks caused by the generated wormholes, which may significantly reduce the elastic properties and hardness of rocks. There have been several experimental and simulation studies regardi
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThis study includes the manufacture of four ternary alloys represented S60Se40-XPbX with weight ratios x = 0, 10, 20, and 30 by the melting point method. The components of each alloy were mixed separately, then placed in quartz ampoules and vacuumed out with a vacuum of roger that 10−4 Torr. The ampule was heated in two stages to avoid sudden dissipation and precipitation of selenium on the inner mass of the quartz tube. The ampoule was gradually heated and kept at 450°C for approximately 4 hours followed by 950°C for 10 hours.at a rate of 10 degrees Celsius, the temperature of the electric furnace
In this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
The present study included the microscopic and molecular identification of Entamoeba histolytica by using specific primers to detect four virulence factors possessed by Entamoeba histolytica. Virulence factors included Active Cysteine proteinase, Galactose/N-acetyl-D-galactose-lectin, Amoeba pore C and Phospholipase. Titanium dioxide nanoparticles (TiO2NPs) were synthesized from Pseudomonas aeruginosa which producing Pyocyanin pigment as a reducing agent to form it. After that we studied the ability ofTiO2NPs to inhibit virulence factors production and curing the genes responsible for encoding them by using four different dose 2 ,3, 4, 6 mg/Kg and administered by intraperitoneal injection
... Show MoreBackground: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm a
... Show More