This work presents an innovative approach to enhancing the performance of concrete with reclaimed asphalt pavement (RAP) aggregates using titanium dioxide (TiO2) nanoparticles. Traditional limestone coarse aggregates were partially replaced with 30% and 50% RAP aggregates; a subset of mixtures containing RAP aggregates was treated with TiO2 nanoparticles. The rheological, mechanical, and long-term properties of concrete, along with changes in its chemical composition following the addition of RAP and TiO2, were evaluated. Results revealed that using 30% and 50% RAP in concrete mixtures reduced their compressive strength by 18% and 27%, respectively. However, using TiO2 in those mixtures enhanced their compressive strength by 8.7% and 6.3%. Moreover, concrete with 50% RAP exhibited an 85% increase in water absorption (the highest among all mixtures) compared to the control. TiO2 treatment was most beneficial in the 30% RAP mixture, reducing its water absorption by 32.5% compared to its untreated counterpart. Additionally, the 30% RAP mixture treated with TiO2 showed the highest resistance to sulfates among modified mixtures, as its compressive strength decreased by 10.4% compared to a decrease of 23% in the strength of the untreated 30% RAP mixture. Statistical analysis using single-factor ANOVA showed that integrating RAP aggregates with or without the presence of TiO2 particles would significantly affect the concrete properties in terms of their population means. The t-test analysis, on the other hand, proved sufficient evidence that the mean values of the 30% RAP mixture treated with TiO2 would not differ significantly from the control in terms of its slump and water absorption properties. The chemical structure analysis revealed an increase in the Si-O-Si and Si-O functional groups when using TiO2 in RAP mixtures, suggesting improved hydration activity and accelerated C-S-H formation in the treated RAP mixtures. Moreover, distinct C-H peaks were witnessed in concrete with untreated RAP aggregates, resulting from the aged asphalt coating on the RAP, which weakened the bond between the RAP and the cementitious matrix.
Porous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreThis investigation was undertaken to evaluate the effectiveness of using Hydrated lime as a (partial substitute) by weight of filler (lime stone powder) with five consecutive percentage namely (1.0, 1.5, 2.0, 2.5, 3.0) % by means of aggregate treatment, by introducing dry lime on dry and 2–3% Saturated surface aggregate on both wearing and binder coarse. Marshall design method, indirect tensile test and permanent deformation under repeated loading of Pneumatic repeated load system at full range of temperature (20, 40, 60) C0 were examined The study revealed that the use of 2.0% and 1.5 % of dry and wet replacement extend the pavement characteristics by improving the Marshall properties and increasing the TSR%. Finally, increase permanent
... Show MoreTransparent nano- coating was prepared by Sol-Gel method from titanium dioxide TiO2 which has the ability to self-cleaning coating used for hospitals, laboratories, and places requiring permanent sterilization. Three primary colors are selected (red, blue, and yellow) as preliminary study to the effect of these colors on the nano-coating. Three traditional oil paints color were used as base, then coated by a layer of TiO2-Sol and deposited on the paints. The optical properties of TiO2-Sol were measured; the maximum absorption wavelength at (λmax=387 nm), the refractive index (n=1.4423) and the energy band gap (Eg=3.2 eV). The structure properties found by X-ray diffraction of TiO
: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e
... Show MoreAsphalt binder is a thermoplastic material that conducts as an elastic solid at lower service temperatures or throughout fast loading rate. At a high temperature or slow rate of loading, asphalt binder conducts as a different liquid. The classical duplication generates a required to assess the mechanical properties of asphalt concrete at the anticipated service temperature to reduce the stress cracking, which happens at lower temperatures, fatigue, and the plastic deformation at higher temperatures (rutting). In this study, an achievement was made to assess the effect of temperature on the mechanical characteristics of asphalt concrete mixes. A total of 132 asphalt concrete samples were attended utilizing two asphalt cement grades (40-50) a
... Show MoreThe rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreLaboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrate
... Show More