The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
This systematic review aimed to investigate the relation between orthodontic treatment (OT) and the incidence of the gingival black triangle (GBT) after completing treatment with a fixed orthodontic appliance, as well as the associated risk factors and the level of alveolar bone. Electronic and hand searches were conducted in three electronic databases for relevant articles published up to March 2022. Retrieved articles went through a two-step screening procedure, and the risk of bias (RoB) was assessed by the Joanna Briggs Institute checklists. The incidence of GBT after OT was set as the primary outcome, while the secondary outcomes were the risk factors associated with GBT and alveolar bone loss following OT. Out of 421 papers, 5
... Show MoreIn this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
Background: This study aims to investigate the effect of fixed orthodontic appliances and/or antihypertensive drugs on the weight of experimental rats. Materials and Methods: Thir-ty-six male Wistar albino rats were subjected to a split-mouth design study, in which an orthodontic appliance was inserted in one side to move the first molar mesially for 2 weeks while the other side acted as a control to tooth movement. The rats were allocated into three groups: group A (n = 12), without any pharmacological treatment; group B (n = 12), subcu-taneous injection of bisoprolol fumarate (5 mg/kg) daily; and group C (n = 12), subcutaneous injection of valsartan (10 mg/kg) daily. A fixed orthodontic appliance with a closing coil spring delivering 5
... Show MoreThis paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.