Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreThis review is concluded of 8-Hydroxyquinline (8HQ) compound and derivatives which has a very significant interests with a strong fluorescence , furthermore the relationship between divalent metal ions and characteristic of chelating . In the same way coordinated features have increase of its organic action and inorganic behavior by giving many samples of compounds which are a good chelating agents ligands with more capable of forming very stable complexes.Therefore, the role of (8HQ) is not limited on complexes only but its applications in different fields so this review will focus on demonstration preparation methods and properties of (8HQ) derivatives with their complexes and applications, hopefully that we will cover a part of scientifi
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreGeographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreThis paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreBackground: Acute appendicitis is the most common abdominal surgical emergency. The diagnosis of this condition is still essentially clinical and there is difficulty in the clinical diagnosis, especially among elderly, children and patients with a typical presentation, so early and accurate diagnosis of acute appendicitis is important to avoid its complications.Objectives: To evaluate the degree of accuracy of Alvarado scoring system in the diagnosis of acute appendicitis.Method: Two hundred patients were admitted to the Alkindy Teaching Hospital from January 2011 to april 2014- presented with symptoms and signs suggestive of acute appendicitis. After examination and investigations all patients were given a score according to Alvarado sc
... Show More