Advancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was evaluated using Marshall properties, rutting, resilient modulus, and fatigue tests. Long-term pavement behavior was predicted using VESYS 5W software. The results showed that incorporating 1.0% CNT with 4.0% PE significantly improved binder rheology, increasing the true failure temperature by approximately 10% compared to the reference binder. Complex modulus and phase angle master curves also indicated notable improvements at low frequencies. Mixtures containing 2% CNT demonstrated approximately one-third of the permanent strain observed in the reference mix, while PCNT1.0% exhibited the best fatigue resistance. These findings highlight the significant role of combining plastomeric modifiers (PE) with nanoscale materials (CNTs) in enhancing the performance of asphalt binders and mixtures.
Background: To evaluate the ISO depth of cure of bulkfill composites and depth of cure which determined by Vickers microhardness test. Materials and Methods: Bulkfill resin composite specimens (n=150) were prepared of three bulkfill composite materials (TetricEvo Ceram, Quixfil and SDR) and light cured by Flash max p3 for 3, 10, 20 seconds and by wood pecker for 10, 20 seconds respectively, a mold was filled with one of the three bulkfill composites and light cured. The specimens removed from the mold and scraped by plastic spatula and the remaining length (absolute length) was measured which represent the ISO depth of cure. After that the specimens were returned into the mold and a microhardness indentation device applied on the specimen
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
This study was carried out at the Dept. Hortic. and Land.Gard., Coll. Agric. Eng.Sci., University of Baghdad during fall season of 2019-2020, in order to evaluate the effect of nutrient solution type under hydroponic system (NFT) on growth, yield and quality of broccoli Brassica oleracea var.italica. Two experiments were carried out which were the standard solution experiment (Cooper) and the alternative solution experiment (ABEER) prepared from fertilizers. Results revealed that the type of solution used in the hydroponics system had non significant effect on the leaves content of N,K, Mg, Fe, Cu, B, Chlorophyll, leaves number, root length, weight of the main heads, number of side heads were not significantly affected. 13nt, refl
... Show MoreBackground: Orthodontic tooth movement is characterized by tissue reactions, which consist of an inflammatoryresponse in periodontal ligament and followed by bone remodeling in the periodontium depending on the forces applied. These processes trigger the secretion of various proteins and enzymes into the saliva.The purpose of thi study was to evaluate the activity of alkaline phosphatase (ALP) in saliva during orthodontic tooth movement using different magnitude of continuous orthodontic forces.
Materials and Methods: Thirty orthodontic patients (12 males and 18 females) aged 17-23 years with class II division I malocclusion all requiring bilateral maxillary first premolar extractions were randomly divided into three groups according t
Pulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show More
In this study, two types of mixes were adopted by using two grading of coarse aggregate. The practical side of this study was to produce no-fine aggregate concrete by using crushed clay brick aggregates. The durability of the produced concrete and internal sulfate attack was studied. For durability assessment, it is found that the no-fine concrete made with crushed brick aggregate lost about (15-25) % of its compressive strength after being subjected to 60 cycles of wetting and drying with age 120 days. The curing condition showed that the water curing improved the compressive strength with a rate higher than that when sealed or air dry curing were used. The crushed brick no-fine concrete de
... Show MoreThe Iraqi houses flattening the roof by a concrete panel, and because of the panels on the top directly exposed to the solar radiation become unbearably hot and cold during the summer and winter. The traditional concrete panel components are cement, sand, and aggregate, which have a poor thermal property. The usage of materials with low thermal conductivity with no negative reflects on its mechanical properties gives good improvements to the thermal properties of the concrete panel. The practical part of this work was built on a multi-stage mixing plan. In the first stage the mixing ratio based on the ratios of the sand to cement. The second stage mixing ratios based on replacing the coarse aggregate quantities with the
... Show More