Advancing the multi-scale performance of asphalt pavements requires innovative binder modifications that address limitations in rutting resistance, fatigue resistance, and durability across the binder, mixture, and structural levels. This study evaluates the performance of asphalt cement, mixtures, and pavement systems modified with a combination of polyethylene (PE) and carbon nanotubes (CNTs). The binder was modified using 4% PE and varying CNT contents (0.5%, 1%, 1.5%, and 2% by weight of the modified binder). Binder performance was assessed through conventional and rheological tests, including penetration, softening point, viscosity, performance grade (PG) evaluation, and master curve analysis. Mixture-level performance was evaluated using Marshall properties, rutting, resilient modulus, and fatigue tests. Long-term pavement behavior was predicted using VESYS 5W software. The results showed that incorporating 1.0% CNT with 4.0% PE significantly improved binder rheology, increasing the true failure temperature by approximately 10% compared to the reference binder. Complex modulus and phase angle master curves also indicated notable improvements at low frequencies. Mixtures containing 2% CNT demonstrated approximately one-third of the permanent strain observed in the reference mix, while PCNT1.0% exhibited the best fatigue resistance. These findings highlight the significant role of combining plastomeric modifiers (PE) with nanoscale materials (CNTs) in enhancing the performance of asphalt binders and mixtures.
In this research a theoretical study has been carried out on the behavior and strength of simply supported composite beams strengthened by steel cover plate taking into consideration partial interaction of shear connectors and nonlinear behavior of the materials and shear connectors. Following the procedure that already has been adopted by Johnson (1975), the basic differential equations of equilibrium and compatibility were reduced to single differential equation in terms of interface slip between concrete slab and steel beam. Furthermore, in order to consider the nonlinear behavior of steel, concrete and shear connectors, the basic equation was rearranged so that all terms related to materials are isol
... Show MoreThe aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to
... Show MoreObjective: To measure the serum levels of Fetuin-A, ischemia-modified albumin (IMA), and ferritin in hospitalized patients with severe COVID-19in Baghdad, Iraq. Moreover, to determine these biomarkers' cut-off valuesthat differentiate between severely ill patients and control subjects. Methods: This case-control study was done from 15 September to the end of December 2021 and involved a review of the files and collectionof blood samples from patients (n=45, group1) hospitalized in COVID-19 treatment centersbecause of severe symptoms compared tohealthy subjects as controls (n=44, group2). Results: Fetuin-A serum levels were not statistically different between patients and controls. In contrast, IMA and ferritin levels were significan
... Show MoreIn the present study the radon concentration was measured in indoor places by the RAD7 (radon detector) was in some locations at Al-Tuwaitha nuclear site and some surrounding areas for the duration from 13/10/2016 to 2/1/2017 and the measurement of the indoor radon concentration ranged from (4.96±4.4 to 102±25) Bq/m3. The high value of radon has been found at decommissioning directorate /emergency room, which is lower than the action value recommended by the Environmental Protection Agency (EPA) which is (148 Bq/m3) while the lowest value has been founded in central laboratories directorate \ models room. These values were used to calculate the annual effective dose and the health risks for cells bronchial which caused by the inhalatio
... Show MoreThe objective of investigating some biochemical parameters like urea, creatinine, Hb and other parameters as CRP and leptin in the serum of ESRD patients on hemodialysis pre-dialysis. Method: Sample of 250 cases which consists of the patient with ESRD, their mean ages were 52.66 ± 12.55 years with ranged from 18-83. Moreover, under hemodialysis treatment not less than three months. Apparently, 20 healthy subjects were selected as (control) for comparison. Results: The results showed that there was a significant increase (p<0.01) in the serum urea, creatinine, CRP, and leptin. While, revealed significant (p< 0.05) decrease in the levels of uric acid, serum glucose, albumin, inorganic phosphorus, potassium, Hb and platelet in patien
... Show MoreTwo samples of (Ag NPs-zeolite) nanocomposite thin films have been prepared by easy hydrothermal method for 4 hours and 8 hours inside the hydrothermal autoclave at temperatures of 100°C. The two samples were used in a photoelectrochemical cell as a photocatalyst inside a cell consisting of three electrodes: the working electrode photoanode (AgNPs-zeolite), platinum as a cathode electrode, and Ag/AgCl as a reference electrode, to study the performance of AgNPs-zeolite under dark current and 473 nm laser light for water splitting. The results show the high performance of an eight-hour sample with high crystallinity compared with a four-hour sample as a reliable photocatalyst to generate hydrogen for renewable energies.
This paper presents the design and analysis of composite right left hand (CRLH) electromagnetic bandgap (EBG) structure. The proposed unit cell is consistent of a dielectric substrate with dimensions of 5×5×1 mm 3 made of FR4-Epoxy with εr = 4.4 underneath of a conductive patch with dimensions of 4.4×4.4mm 2 . The unit cell is structured to perform a negative permittivity (ε) and negative permeability (µ) in different bands. The proposed unit cell is developed to 5G systems in the sub-6GHz bands. In this work, a complete analysis of the unit cell in terms of Sparameters, constitutive parameters and refraction index are evaluated using HFSS simulation package based on Finite Element Method (FEM).