The inflammatory response is a crucial aspect of the tissues’ responses to deleterious inflammogens. This complex response involves leukocytes cells such as macrophages, neutrophils, and lymphocytes, also known as inflammatory cells. In response to the inflammatory process, these cells release specialized substances which include vasoactive amines and peptides, eicosanoids, proinflammatory cytokines, and acute-phase proteins, which mediate the inflammatory process by preventing further tissue damage and ultimately resulting in healing and restoration of tissue function. This review discusses the role of the inflammatory cells as well as their by-products in the mediation of inflammatory process. A brief insight into the role of natural an
... Show MoreThe main challenge is to protect the environment from future deterioration due to pollution and the lack of natural resources. Therefore, one of the most important things to pay attention to and get rid of its negative impact is solid waste. Solid waste is a double-edged sword according to the way it is dealt with, as neglecting it causes a serious environmental risk from water, air and soil pollution, while dealing with it in the right way makes it an important resource in preserving the environment. Accordingly, the proper management of solid waste and its reuse or recycling is the most important factor. Therefore, attention has been drawn to the use of solid waste in different ways, and the most common way is to use it as an alternative
... Show MoreThe recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreThis paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar
... Show MoreWith the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Testing is a vital phase in software development, and having the right amount of test data is an important aspect in speeding up the process. As a result of the integrationist optimization challenge, extensive testing may not always be practicable. There is also a shortage of resources, expenses, and schedules that impede the testing process. One way to explain combinational testing (CT) is as a basic strategy for creating new test cases. CT has been discussed by several scholars while establishing alternative tactics depending on the interactions between parameters. Thus, an investigation into current CT methods was started in order to better understand their capabilities and limitations. In this study, 97 publications were evalua
... Show MoreTransdermal drug delivery has made an important contribution to medical practice but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. Transdermal therapeutic systems have been designed to provide controlled continuous delivery of drugs through the skin to the systemic circulation. A transdermal patch is an adhesive patch that has a coating of drug; the patch is placed on the skin to deliver particular amount of drug into the systemic circulation over a period of time. The transdermal drug delivery systems (TDDS) review articles provide information regarding the transdermal drug delivery systems and its evaluation process as a ready reference for the research scientist who is involved
... Show More