Abstract Inflammation of periodontal tissues is the consequence of interaction between periodontal pathogens and immune system. This is associated with increased expression of inflammatory cytokines, which may exert destructive effect to the periodontal tissues when released over long period. The aim of this study was to chronologically track the homeostasis of oral keratinocytes following removal of periodontal pathogens. This was done by investigating expression of selected inflammatory markers and integrity of epithelial monolayers in vitro. Rat oral keratinocytes were stimulated with heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis over 7-days then bacteria were washed away and epithelial cells re-cultured for 3-days. Expression of IL-1β, IL-6, and IL-8 was measured by ELISA while transcription of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metalloproteinase -8 (MMP-8) was measured by polymerase chain reaction before and after removal of bacteria. Integrity of epithelial sheet was investigated by using transepithelial electrical resistance. Data showed general downregulation of IL-1b, IL-6, and IL-8 associated with restoring transcription of TIMP-1 and MMP-8 to normal level following removal of bacteria from epithelial cultures. However, expression of IL-8 and MMP-8 remained significantly higher than unstimulated epithelial cells despite withdrawal of F. nucleatum and P. gingivalis respectively from oral keratinocytes cultures. In addition, integrity of epithelial barrier function remained compromised even after removal of P. gingivalis. Results suggest that even after three days following removal of periodontal pathogens, oral keratinocytes sustained persistent upregulation of certain inflammatory markers that could compromise integrity of epithelial barrier function.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreSome maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
KE Sharquie, AA Noaimi, MS Al-Zoubaidi, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 8
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
Background: Nickel-titanium (NiTi) archwires have become increasingly popular because of their ability to release constant light forces, which are especially useful during initial alignment and leveling phase. The aim of the present study was to investigate and compare the load–deflection characteristics of four commercially available NiTi archwires. Materials and methods: 200 NiTi 0.014, 0.016, 0.018, 0.016x0.022 and 0.019x0.025-inch nickel–titanium archwires from four different manufacturers (3M, Ortho Technology, Jiscop and Astar) were tested. The load-deflection properties of these archwires were evaluated by a full arch bending test in both palatal and gingival directionsat 37°C temperature using a universal material t
... Show MoreBackground: Nanotechnology represents a new science that promises to provide a broad range of uses and improved technologies for biological and biomedical applications. One of the reasons behind the intense interest is that nanotechnology permits synthesis of materials that have structure is less than 100 nanometers. The present work revealed the effect of zinc oxide nanoparticles (ZnO NPs) on Streptococcus mutans of Human Saliva in comparison to de-ionized water. Materials and methods: Streptococcus mutans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs w
... Show MoreThe first aim of this paper was to evaluate the push-out bond strength of the gutta-percha coating of Thermafil and GuttaCore and compare it with that of gutta-percha used to coat an experimental hydroxyapatite/polyethylene (HA/PE) obturator. The second aim was to assess the thickness of gutta-percha around the carriers of GuttaCore and HA/PE obturators using microcomputed tomography (