Recent advances in wireless communication systems have made use of OFDM technique to achieve high data rate transmission. The sensitivity to frequency offset between the carrier frequencies of the transmitter and the receiver is one of the major problems in OFDM systems. This frequency offset introduces inter-carrier interference in the OFDM symbol and then the BER performance reduced. In this paper a Multi-Orthogonal-Band MOB-OFDM system based on the Discrete Hartley Transform (DHT) is proposed to improve the BER performance. The OFDM spectrum is divided into equal sub-bands and the data is divided between these bands to form a local OFDM symbol in each sub-band using DHT. The global OFDM symbol is formed from all sub-bands together using the (IDHT). The BER performance of the proposed system is simulated and compared with the conventional OFDM in different channel conditions to show the gain in SNR achieved by the proposed system.
This paper details the process of designing, analysing, manufacturing, and testing an integrated solid-state hydrogen storage system. Analysis is performed to optimise flow distribution and pressure drop through the channels, and experimental investigations compare the effects of profile shape on the overall power output from the fuel cell. The storing of hydrogen is given much attention in the selection of a storage medium, and the effect of a cooling system to reduce the recharging time of the hydrogen storage vessel. The PTFE seal performed excellently, holding pressure over 60 bar, despite requiring changing each time the cell is opened. The assembly of the vessel was simple and straightforward, and there was no indication of pressure
... Show MoreText Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t
... Show MoreA total number of 68 water samples was revealed 20 isolates being Staphylococcus aureus. Irrigation water isolates represented 25% of isolates while wastewater 75%. all isolates were identified by morphological, microscopial, biochemical tests and VITEK®2 Compact. Bacterial isolates were subjected to 16 antibiotics, all irrigation water and wastewater isolates were resistant to penicillin while they were fully sensitive to Ciprofloxcin. Irrigation water isolates showed relatively greater multi-drug resistance than wastewater, wherein irrigation water isolates showed 100% multi-drug resistance while wastewater isolates showed 73.3% multi-drug resistance, indicating the ability of S. aureus MDR to move from one site to another, which means t
... Show MoreThe ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreEsterification reaction is most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock to study and simulate production of biodiesel. Batch esterification of oleic acid was carried out at operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 1/1 to 6/1, H2SO4 as the catalyst 1 and 5% wt of oleic acid, reaction time up to 180 min. The optimum conditions for the esterification reaction were molar ratio of ethanol/oleic acid 6/1, 5%wt H2SO4 relative to oleic acid, 70 °C, 90 min and conversion of oleic 0.92. The activation energy for the suggested model was 26625 J/mole for forward reaction and 42189 J/mole for equilibrium constant. The obtained results s
... Show MoreA roundabout is a highway engineering concept meant to calm traffic, increase safety, reduce stop-and-go travel, reduce accidents and congestion, and decrease traffic delays. It is circular and facilitates one-way traffic flow around a central point. The first part of this study evaluated the principles and methods used to compare the capacity methods of roundabouts with different traffic conditions and geometric configurations. These methods include gap acceptance, empirical, and simulation software methods. Previous studies mentioned in this research used various methods and other new models developed by several researchers. However, this paper's main aim is to compare different roundabout capacity models for acceptabl
... Show MoreThe History of Multi Parties and its Effect on Political System in India
Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show More