The cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the CSVT composite and pristine chitosan for Cu(II) and Cd(II) species were systematically examined. Due to its porous structure and increased surface area, the CSVT composite demonstrated superior adsorption ability when compared to pristine chitosan. The maximum adsorption capacities of Cu(II) and Cd(II), determined by Langmuir adsorption isotherms in batch experiments, were found to be 116.22 and 147.64 mg/g, respectively, under initial pH conditions of 8 and an initial concentration of 250 mg/L. The thermodynamic analysis revealed that the adsorption process for both metal ions is spontaneous, endothermic physisorption, and thermodynamically favorable. These findings collectively affirm the CSVT composite as a highly promising adsorbent for the efficient and selective removal of Cu(II) and Cd(II) from aqueous solutions
Our life is a test and the eternal life in the afterlife. So we must work well in our life even win paradise, must always remember the death and there is a life after this death and we will be responsible for everything we've done in our life. God did not create us vain but for reward, punishment, for this we must have to well prepare for this great day and we have to think about what to do in order to win the paradise.
Keywords: paradise, surat al-rahman, preparation.
this paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).
Adsorption capacity of a waste biomass, date stones, for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m²/g and 475.88 mg/g, respectively. The effects of temperature, initial sorbate concentration, and contact time on the adsorption process were studied. Experimental equilibrium data for adsorption of Ph and PNPh on date stones were analyzed by the Langmuir, Freundlich and Sips isotherm models. The results show that the best fit was achieved with the Sips isotherm equation with maximum adsorption capacities of 147.09 and 179.62 mg/g for Ph and PNPh, respectively. The kinetic data wer
... Show MoreRealistic implementation of nanofluids in subsurface projects including carbon geosequestration and enhanced oil recovery requires full understanding of nanoparticles (NPs) adsorption behaviour in the porous media. The physicochemical interactions between NPs and between the NP and the porous media grain surface control the adsorption behavior of NPs. This study investigates the reversible and irreversible adsorption of silica NPs onto oil-wet and water-wet carbonate surfaces at reservoir conditions. Each carbonate sample was treated with different concentrations of silica nanofluid to investigate NP adsorption in terms of nanoparticles initial size and hydrophobicity at different temperatures, and pressures. Aggregation behaviour and the
... Show MoreOro slippery tablets (OSTs) is a technique used to improve swallowing of tablets for patients with dysphagia. The aim of this study was to formulate irbesartan and hydrochlorothiazide as Oroslippery tablets (OST) containing 150 mg irbesartan and 25 mg hydrochlorothiazide for dysphagia patients. A simple and rapid method of analysis was developed and validated according to the ICH guideline using HPLC with UV detector. Tablets were prepared by direct compression and then coated with the slippery coat of three different concentrations of the slippering substance “xanthan gum’ (2%, 3% and 4%) in Opadry Colorcone® and evaluated according to USP. Slipperiness test was performed using Albino rabbits. Results showed that 2% xanthan gum gav
... Show MorePure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
Pure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
Cu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two
A transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show More