The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range to (2.96-3.06)eV with increasing annealing temperatures. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature decreases with the increase of annealing temperatures, and the mechanism of conductivity occurs in two ranges of temperature, from Hall measurements the conductivity for all samples of ZnS films is n-type.
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreThis paper presents a novel inverse kinematics solution for robotic arm based on artificial neural network (ANN) architecture. The motion of robotic arm is controlled by the kinematics of ANN. A new artificial neural network approach for inverse kinematics is proposed. The novelty of the proposed ANN is the inclusion of the feedback of current joint angles configuration of robotic arm as well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired position and orientation of the end effector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm with a gripper is controlled by ANN. The comprehensive experimental results proved the appl
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
Fluconazole was used to test the susceptibility of Candida albicans isolated from different clinical samples, and to detect mutations in ERG11 gene, and their relationship to fluconazole resistance. Forty-eight isolates of Candida albicans were tested for susceptibility using the disc diffusion method (M-44). ERG11 genes of six isolates were amplified (four resistant, two susceptible) and sequenced. The sequenced genes were analyzed to detect the mutations. Out of 48 isolates of Candida albicans, 4 (8%) were resistant to fluconazole. Sixteen-point mutations were detected included 13 silent mutations, and three missense mutations. The mutations of A945C (E266D) and G1609A (V488I) were found only in susceptible Candida albicans isolates, whil
... Show MoreIn current study, the dye from flowers petals of Strelitzia reginae used for the first time to prepare natural photosensitizer for DSSC fabrication. Among five different solvents used to extract the natural dye from S. reginae flowers, the ethanol extract of anthocyanin dye revealed higher absorption spectrum of 0.757a.u. at wavelength of 454nm. A major effect of temperature was studied to increase the extraction yield. The results show that the optimal temperature was 70 °C and there was a sharp decrease of dye concentration from 0.827 at temperature of 70 °C to 0.521 at temperature of 90°C. The extract solution of flowers of S. reginae showed higher concentration in acidic media, especially at pH 4 (0.902). The
... Show MoreBackground: Depression is a common mental disorder that presents with depressed mood;it can become chronic or recurrent and affect dental health .Thus this research aimed to assess the prevalence and severity of dental caries among students with different grade of depression in relation to physicochemical characteristics of stimulated whole saliva. Materials and methods: The total sample involved for depression status assessment is composed of 800 students for both gender aged 15 years old that were selected randomly , This was performed using children depression inventory (CDI) index that divided the students into four groups of depression(low or average grade, high average grade, elevated grade and very elevated grade). The diagnosis and
... Show More