Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of network topology have been generated to observe the effectiveness of proposed algorithms on different network architectures. The results reveal that RF performs better than KNN in a single topology, and both have close performance in other topologies.
The study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture, University of Baghdad " Abu Ghraib" during the growing seasons 2013-2014 to Evaluate the Vegetative growth , yield traits and genetic parameter of some tomato mutants. Results showed significantly increased of plant height in M6-2 mutant 245cm in Comparison with M6- 3 130 cm . M6-4 mutant significantly increasing of floral clusters 13 . Mutant M6-3 showed significantly increasing the average of, fruit weight 125.9g and plant yield 7.17 kg.plant-1 as comparison with M6-2 which showed decreasing of average of fruit weight and plant yield 79.40g and 4.38 kg.plant-1 respectively. Also results showed the highest Genetic variat
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening,College of Agriculture, University of Baghdad during the growing seasons of 2013- 2014 .forPerformance of Evaluation Vegetative growth and yield traits and estimate some important geneticparameter on seven selected breed of tomato which (S1-S7 ) Pure line. the results found significantdifferences between breeds in all study trails except clusters flowering number .S1 significantly plantlength which reached 227.3 .Also S1,S2 and S4 were significantly increased the number fruit for plant,Fruit weight Increased in S3 ,S6 and plant yield. Increased in S1, S4 ,S5. Genetic variation valueswere low in Floral clusters , TSS and fruit firmest and medium i
... Show MoreThe regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreThis research aims to the possibility of evaluating the strategic performance of the State Board for Antiquities and Heritage (SBAH) using a balanced scorecard of four criteria (Financial, Customers, Internal Processes, and Learning and Growth). The main challenge was that the State Board use traditional evaluation in measuring employee performance, activities, and projects. Case study and field interviews methodology has been adopted in this research with a sample consisting of the Chairman of the State Board, 6 General Managers, and 7 Department Managers who are involved in evaluating the strategic performance and deciding the suitable answers on the checklists to analyze it according to the 7-points Likert scale. Data analysis re
... Show MoreThis research aims to the possibility of evaluating the strategic performance of the State Board for Antiquities and Heritage (SBAH) using a balanced scorecard of four criteria (Financial, Customers, Internal Processes, and Learning and Growth). The main challenge was that the State Board use traditional evaluation in measuring employee performance, activities, and projects. Case study and field interviews methodology has been adopted in this research with a sample consisting of the Chairman of the State Board, 6 General Managers, and 7 Department Managers who are involved in evaluating the strategic performance and deciding the suitable answers on the checklists to analyze it ac
... Show MoreBackground Parkinson’s disease (PD) is currently the fastest-growing neurological disorder in the world. Patients with PD face numerous challenges in managing their chronic condition, particularly in countries with scarce healthcare infrastructure. Objective This qualitative study aimed to delve into neurologists’ perspectives on challenges and gaps in the Iraqi healthcare system that influence the management of PD, as well as strategies to mitigate these obstacles. Method Semi-structured interviews were conducted with neurologists from five different Iraqi provinces, working in both hospitals and private neurology clinics, between November 2024 and January 2025. A thematic analysis approach was employed to identify the main challenge
... Show More