According to the prevalence of multidrug resistance bacteria, especially Pseudomonas aeruginosa, in which the essential mechanism of drug resistance is the ability to possess an efflux pump by which extrusion of antimicrobial agents usually occurs, this study aims to detect the presence of mexB multidrug efflux gene in some local isolates of this bacteria that show resistance towards three antibiotics, out of five. Sensitivity test to antibiotics was performed on all isolates by using meropenem (10μg/disc), imipenem (10μg/disc), amikacin (30 μg/disc), ciprofloxacin (5μg/disc) and ceftazidime (30 μg/disc). Conventional PCR results showed the presence of mexB gene (244bp) in four isolates out of ten (40%). In addition,25, 50μg/ml of curcumin was used to detect its efficacy with the antibiotics that the bacteria showed resistance towards. Results showed the highest resistance for ciprofloxacin (80%), while all of them were sensitive to imipenem. In addition, the present results show that both concentrations of curcumin (25, 50μg/ml) were effective in increasing the zone of inhibition from zero to 10 mm for isolates towards amikacin. Same result was obtained towards ciprofloxacin, except for an increase of inhibition zone from zero to 7 mm to one isolate (38T) when treated with 50 μg/ml, and finally an increase in sensitivity to ceftazidime was found and inhibition zone was increased from 8 to 11 for the second isolate (42E), which revealed that curcumin potentiates antibiotics activity by inhibition of efflux pump mechanisms that can be related to the synergetic activity between antibiotics and curcumin.
Coupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
The formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show Moreچکیدهی بحث
به نظر میآید که عالم هستی ، بر مسألهی « حرکت» استوار دارد ، و روح ، همیشه دنبال دگرگونی و تکامل و برتری میگردد. حرکت ، همهی چیزها در عالم إمکان را در بر میگیرد. حرکت در بنیادهای فکر مولانا جای مهمی دارد .اشعار مولانا مقدار زیادی از پویایی و حرکت برخوردارست، و از آنجایی که فعل ، عنصر تکانبخش جمله ، و کانون دلالت است ، ترجیح دادیم - علاوه بر دیگر عنا
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
New mixed ligand complexes of New Schiff base 4,4'- ((naphthalen-1-ylimino) methylene) dibenzene-1,3-diol and 8-hydroxy quinoline: Synthesis, Spectral Characterization, Thermal studies and Biological Activities
Enticed by the present scenario of infectious diseases, four new Co(II), Ni(II), Cu(II), and Cd(II) complexes of Schiff base ligand were synthesized from 6,6′-((1E-1′E)(phenazine-2,3-dielbis(azanylidene)-bis-(methanylidene)-bis-(3-(diethylamino)phenol)) (