Plagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and Near-duplicate detection (PAN) Dataset 2009- 2011. Verbatim plagiarism, according to the researchers, plagiarism is simply copying and pasting. They then moved on to smart plagiarism, which is more challenging to spot since it might include text change, taking ideas from other academics, and translation into a more difficult-to-manage language. Other studies have found that plagiarism can obscure the scientific content of publications by swapping words, removing or adding material, or reordering or changing the original articles. This article discusses the comparative study of plagiarism detection techniques.
The contractual imbalance is perceived today by the majority of the doctrine as being one of the pitfalls to the execution of the contracts. As a result, most legislations grant judges the power to intervene to restore it. Granting the judge the power to complete the contract raises the question of the extent to which the judge can obtain such power. Is it an absolute authority that is not limited? If so, is it a broad discretion in which the judge operates in his conscience, or is it a power of limited scope by specific legal texts and conventions? This is what we will try to answer in this research.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show More|
Background: Drawing blood to measure total serum bilirubin is painful & time consuming. Transcutaneous bilirubinometer working by multiwavelength spectral reflectance from the skin surface on forehead or upper sternum is a quick & painless technique. Objectives: to compare the effectiveness of transcutaneous (over the upper sternum and forehead) and serum bilirubin measurement of neonate with jaundice. Subjects and Methods: This is a cross sectional prospective study. It enrolled 175 jaundiced neonates & excluded those exposed to phototherapy. It was conducted at Child Central Teaching Hospi |