Preferred Language
Articles
/
NhZrGIcBVTCNdQwC1jbA
Performance Evaluation of Al-Karkh Water Treatment Plant Using Model-driven and Data-Driven Models
...Show More Authors
Abstract<p>There is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardness, Calcium, Magnesium, Total Solids, Nitrite, Nitrates, Ammonia, and Silica are to be used to construct the specific model, while pH, Fluoride, Aluminium, Nitrite, Nitrate, Ammonia, Silica, and Orthophosphate of the treated water were eliminated from the analysis. For modeling the coagulation and flocculation process temperature, Alkalinity and pH of raw water were the depended variables of the model. As for the modeling process turbidity of the treated water was used as the output variable. In general, the linear models including model-driven type, (Multivariate multiple regression, MMR and Multiple linear regression, MLR) have slightly higher prediction efficiencies than the, data-driven type (artificial neural network, ANNM). The coefficients of determination (R<sup>2</sup>) reached 66 to 85% for the MMR and MLR models and 65 to 81% for the ANN models.</p>
Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Nov 01 2012
Journal Name
2012 International Conference On Advanced Computer Science Applications And Technologies (acsat)
Data Missing Solution Using Rough Set theory and Swarm Intelligence
...Show More Authors

This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Statistical Applications In Genetics And Molecular Biology
Mixture model-based association analysis with case-control data in genome wide association studies
...Show More Authors
Abstract<p>Multilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Evaluation of Acid and Hydraulic Fracturing Treatment in Halfaya Oil Field-Sadi Formation
...Show More Authors

Sadi formation is one of the main productive formations in some of Iraqi oil fields. This formation is characterized by its low permeability values leading to low production rates that could be obtained by the natural flow.

Thus, Sadi formation in Halfaya oil field has been selected to study the success of both of "Acid fracturing" and "Hydraulic fracturing" treatments to increase the production rate in this reservoir.

   In acid fracturing, four different scenarios have been selected to verify the effect of the injected fluid acid type, concentration and their effect on the damage severity along the entire reservoir.

   The reservoir damage severity has been taken as "Shallow–Medium– Sever

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 30 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Evaluation of the Anti-Inflammatory Effect of Pioglitazone in Experimental Models of Inflammation in Rats
...Show More Authors

         The antidiabetic thiozolidinediones (TZDs) a class of peroxisome proliferators-activated receptor (PPAR) ligands has recently been the focus of much interest for their possible role in regulation of inflammatory response. The present study was designed to evaluate the anti-inflammatory activity of pioglitazone in experimental models of inflammation in rats. The present study was conducted to evaluate the anti inflammatory effect of TZDs (pioglitazone 3mg/Kg) on acute, sub acute and chronic model of inflammation by using egg-albumin and formalin–induced paw edema in 72 rats, relative to reference drugs Dexamethasone 5mg/Kg and Piroxicam 5mg/Kg. In each inflammation model, 24 rats wer

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Scalar Multiplication in Elliptic Curve Cryptography Implementation using Different Multipliers Over Binary Field GF (2233)
...Show More Authors

This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.

The first approach attains a performance index

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 22 2015
Journal Name
International Journal Of Industrial Management
Regression Factors of Small Businesses Performance: Conceptual Model
...Show More Authors

This study represents an attempt to develop a model that demonstrates the relationship between HRM Practices, Governmental Support and Organizational performance of small businesses. Furthermore, this study assay to unfold the socalled “Black Box” to clarify the ambiguous relationship between HRM practices and organizational performance by considering the pathway of logical sequence influence. The model of this study consists two parts, the first part devoted to examining the causal relationships among HRM practices, employees’ outcomes, and organizational performance. The second part assesses the direct relationship between the governmental support and organizational performance. It is hypothesized that HRM practices positively influ

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Electronics,computer Networking And Applied Mathematics
Comparison of Some Estimator Methods of Regression Mixed Model for the Multilinearity Problem and High – Dimensional Data
...Show More Authors

In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.

View Publication
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Experimental Evaluation Use of Semifluidized Bed Adsorber for the Treatment of P-chlorophenol and O-cresol in Wastewater using Activated Carbon as Adsorbent
...Show More Authors

In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In

... Show More
View Publication Preview PDF