The present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, separately were tested for H2S gas at low (2 ppm) and high (50 ppm) concentrations. ZnO nanorods films showed a sensitivity of 14.71% for pure ZnO with a fast response time of 25.2 sec and recovery time of 33.3 sec towards 2 ppm H2S. For Ag NPs/ZnO and f-MWCNTs/ZnO, sensors showed a significant sensitivity of 27.95 and 42.39 % at ~150 °C with a response time and recovery time less than pure ZnO. The ZnO sensor showed a higher sensitivity at ~150 °C for both Ag NPs and F-MWCNTs at high gas concentration, where it was 35.085 and 58.89% respectively.
An efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols i
... Show MoreTiO2 thin films were deposited by Spray Pyrolysis with thickness ((350±25) nm) onto glass substrates at (350°C), and the film was annealed at temperatures (400 and 500)°C. The structural and morphological properties of the thin films (TiO2) were investigated by X-ray diffraction, Field emission scanning electron microscopy and atomic force microscope. The gas sensor fabricated by evaporating aluminum electrodes using the annealed TiO2 thin films as an active material. The sensitivity of the sensors was determined by change the electrical resistance towards NO2 at different working temperatures (200
Polyacrylamide Solutions of different concentrations (0.2, 0.4, 0.6, 0.8, 1.0 %) of Ag nanoparticles and ZnO nanoparticles were prepared, the viscosities and surface tension were measured for all solutions, where measurements indicated an increase in these properties with increased concentration, where the relative viscosity of polyacrylamide/zinc nanoparticles increased from 1.275 to 2.243, and the relative viscosity of polyacrylamide/silver nanoparticles increased from 1.178 to 1.934. Viscosity is significant parameters during electrospinning process. While the surface tension of the polyacrylamide/zinc nanoparticles has changed from 0.0343 Nm-1 to .0.0.0 Nm-1 and changed from .0.000Nm-1 to.0.0.0 Nm-1. Also the constants KH and KK were
... Show MoreHydrogen fuel is a good alternative to fossil fuels. It can be produced using a clean energy without contaminated emissions. This work is concerned with experimental study on hydrogen production via solar energy. Photovoltaic module is used to convert solar radiation to electrical energy. The electrical energy is used for electrolysis of water into hydrogen and oxygen by using alkaline water electrolyzer with stainless steel electrodes. A MATLAB computer program is developed to solve a four-parameter-model and predict the characteristics of PV module under Baghdad climate conditions. The hydrogen production system is tested at different NaOH mass concentration of (50,100, 200, 300) gram. The maximum hydrogen produc
... Show MorePetroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates inocula
... Show MoreIn the present study, a pressure drop technique was used to identify the phase inversion point of oil-in-water to water-in-oil flows through a horizontal pipe and to study the effect of additives (nanoparticles, cationic surfactant and blend nanoparticles-surfactant) on the critical dispersed volume fraction (phase inversion point). The measurements were carried for mixture velocity ranges from 0.8 m/sec to 2.3 m/sec. The results showed that at low mixture velocity 0.8 and 1 m/sec there is no effect of additives and velocity on phase inversion point, while at high mixture velocities the phase inversion point for nanoparticles and blend (nanoparticles/surfactant) systems was delayed (postponed) to a higher value of the dispers
... Show MoreIn this research, the X-ray diffraction pattern was used, which was obtained experimentally after preparation of barium oxide powder. A program was used to analyze the X-ray diffraction lines of barium oxide nanoparticles, and then the particle size was calculated by using the Williamson-Hall method, where it was found that the value of the particle size is 25.356 nm. Also, the dislocation density was calculated, which is equal to1.555 x1015 (lines/nm2), and the value of the unit cell number was also calculated, as it is equal to 23831.