Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
The interest of application of liquid membrane (pertraction) processes for recovery of medicinal compounds from dilute ammoniacal leach solutions is demonstrated. Selectivity of the liquid membrane ensures a preferential transport of the desired solute from the native extract into the strip solution, vinblastine was successfully extracted from basic media (pH 9.2) and stripped by acidic media of sulfuric acid (pH= 1.3) applying continuous pertraction in a rotating discs contactor and using n-decane as liquid membrane. Transport of vinblastine in three-liquid-phase system was studied and performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of th
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreBack ground: Diabetic nephropathy is rapidly becoming the leading cause of end-stage renal disease (ESRD). The onset and course of DN can be ameliorated to a very significant degree if intervention institutes at a point very early in the course of the development of this complication.
Objective: The aim of this study was to characterize risk factors associated with nephropathy in type I diabetes and construct a module for early prediction of diabetic nephropathy (DN) by analyzing their risk factors.
Methods: Case control design of 400 patients with type I diabetes mellitus (IDDM), aged 19-45 years. The cases were 200 diabetic patients with overt protein urea while the controls were 200 diabetic patients with no protein urea or micr
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More