Preferred Language
Articles
/
NRatb4cBVTCNdQwCskoG
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Postgraduate Medical Journal
Scarring and None Scarring Facial Acne Vulgaris and the Frequency of Associated Skin Diseases
...Show More Authors

BSTRACT: BACKGROUND: Acne vulgaris(AV)is chronic inflammatory disease of pilosebaceous unit of young people. Patients with acne with or with out scarring might differ in regard to their immunological background from those free from acne. OBJECTIVES: To evaluate the problem of facial AV especially patients with scarring and to determine the frequency of associated skin diseases and to be compared with acne free control. METHODS: A cross sectional randomized controlled epidemiological study was conducted from Oct.2005-Oct. 2006.Three hundred students from Basra University; 132 (44%) males and 168 (56%) females were enrolled, their ages ranged from 18-25 (20.9±1.8) years. They were divided into: Group A those free from acne (98 individuals),G

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Postgraduate Medical J
Scarring and none scarring facial Acne vulgaris and the frequency of associated skin diseases
...Show More Authors

S Khalifa E, AH Khalil I, N Adil A, AB Razan A…, 2009

View Publication
Publication Date
Tue Jul 31 2018
Journal Name
The Open Electrical & Electronic Engineering Journal
Minimum Delay Congestion Control in Differentiated Service Communication Networks
...Show More Authors

This paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jun 30 2006
Journal Name
Al-kindy College Medical Journal
The Use of Spiral Computerized Tomography in the Diagnosis of Middle –Third Facial Fractures as Compared to Plain Radiography
...Show More Authors

Background: Trauma is one of the most common
clinical problems that confront the maxillofacial
surgeon and radiologist alike. Middle third facial
fractures are diagnosed primarily on the bases of
clinical examination and plain radiographs than can
result in much preoperative speculation.
Objective: To assess the advantages of spiral
computerized tomography over conventional
radiography in the pre-surgical evaluation of middle
third facial fractures.
Methods: Thirty patients with thirty-eight facial
fractures were studied, all patients were examined
clinically, by plain radiography and then by spiral CT.
Results: Of the 38 middle-third fractures, 16
(42.1%) were zygomatic fractures, 8 (21.1%) were

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
International Journal Of Electrical And Computer Engineering
Load balance in data center SDN networks
...Show More Authors

In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and

... Show More
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
6G Wireless Communications Networks: A Comprehensive Survey
...Show More Authors

View Publication
Scopus (376)
Crossref (362)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2016
Journal Name
2016 International Conference On Computing, Networking And Communications (icnc)
Connectivity and rendezvous in distributed DSA networks
...Show More Authors

In this paper, we use concepts and results from percolation theory to investigate and characterize the effects of multi-channels on the connectivity of Dynamic Spectrum Access networks. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from-a phenomenon which we define as channel abundance. To cope with the existence of multi-channels, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocol, it becomes difficult for two nodes to agree on a common channel, thereby potentially remaining invisible to each other. We model this

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Apr 01 2009
Journal Name
2009 Ieee Wireless Communications And Networking Conference
Power Efficiency Maximization in Cognitive Radio Networks
...Show More Authors

Cognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the exi

... Show More
View Publication
Scopus (16)
Crossref (10)
Scopus Crossref