Background: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite laser on antibiotic-resistant bacteria utilizing varying exposure times, pulse durations, and laser fluencies to determine which dose is more effective on S. aureus bacteria. Method: The laser used in this study was the alexandrite laser which was considered a pulsed laser and had the following parameters: The wavelength was 755 nm, the beam diameter was (14 mm), the exposure times varied (30, 60, 90) seconds, the laser fluency (5, 10, 15 and 20 J.Cm-2). The study was carried out after the bacteria were diagnosed as being antibioticresistant. They were exposed to different doses of Alexandrite laser. Three samples of bacteria were exposed to laser beams for 30 seconds with a 5ms pulse duration and with a laser fluency of 5J/cm2, and this process was repeated with laser fluencies of 10, 15, and 20. This procedure was repeated using exposure times of 60sec and 90sec. As well as, this process was repeated by exposure with 30 sec, 60 sec and 90 sec exposure times, 10ms and 20ms pulse durations and with different laser fluencies 5, 10, 15 and 20J/cm2, separately. Results: A significant reduction (p = <0.0001) in the mean values of the colony was observed with the increase of laser fluency doses compared with control at the same pulse duration. A significant reduction (p = <0.0001) in the mean count of the colonies was observed in the comparison between two laser fluences at the same pulse duration. In conclusion, the exposure times, pulse durations and laser fluencies of pulsed alexandrite laser showed an effect on the mean count of the colonies of S aureus bacteria and determined the effective dose. Keywords: laser, Staphylococcus aureus, Bacteria growth
Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreThis study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the first part of the work; that is the design calculations, simulation and construction. It will be followed by a second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70 m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow disturbances in the test section.
... Show MoreBACKGROUND: HLA-B27 can effect clinical presentation and course of ankylosing spondylitis. Different detection techniques of HLA-B27 are available with variable sensitivities and specificities. OBJECTIVE: To compare serologic and molecular diagnostic techniques of detecting HLA-B27 status and to correlate it with some clinical variables among ankylosing spondylitis patients. PATIENTS AND METHODS: A cross-sectional study was conducted on 83 Iraqi patients with ankylosing spondylitis. Clinical and laboratory evaluations were reported. HLA-B27 status was determined in all patients by real-time PCR using HLA-B27 RealFast™ kit; ELISA method was used as well to detect soluble serum HLA-B27 antigens using Human Leukocyte Antigen® kit. RESULTS:
... Show MoreSewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the
... Show MoreIn this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreIn this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
In this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.