Preferred Language
Articles
/
MxeEP48BVTCNdQwCLmYJ
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Fri Mar 20 2020
Journal Name
Remote Sensing
Lossy and Lossless Video Frame Compression: A Novel Approach for High-Temporal Video Data Analytics
...Show More Authors

The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Statistical Sciences
Use The Coiflets and Daubechies Wavelet Transform To Reduce Data Noise For a Simple Experiment
...Show More Authors

In this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that

... Show More
Publication Date
Mon May 26 2025
Journal Name
Middle East Journal Of Digestive Diseases (mejdd)
Investigating the Role of sHLA-G in the Immunopathogenesis and predicting Gastroesophageal Reflux Disease
...Show More Authors

Background : Gastroesophageal reflux disease (GERD) is one of chronic gastrointestinal diseases in which patient may be asymptomatic or was complained from heartburn and regurgitation or pulmonary symptoms. Aim of the study : Examine the serum level of sHLA-G in GERD patients and can be used as a biomarker for early detection of GERD disease. Materials and methods : The design of the study was a case- control prospective enrolled forty patients consulted Gastroenterology Unit- Al-Kindy Teaching Hospital, were diagnosed as GERD by their physician, and compared to second forty control healthy group form January-2023 to May-2024. Serum used for quantitative assessment of soluble HLA-G (sHLA-G) using a sandwich enzyme-linked immunosorbent a

... Show More
View Publication
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
An Optimised Method for Fetching and Transforming Survey Data based on SQL and R Programming Language
...Show More Authors

The development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste

... Show More
View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Tue Sep 30 2025
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Tetracycline removal from aqueous solution through photo-anodic oxidation process using rotating graphite cylinder anode
...Show More Authors

   In the present work, tetracycline (TC) was removed from a simulated wastewater through a new photo-anodic oxidation process with a rotating graphite cylinder anode. The effects of current density, pH, rotation speed, and NaCl addition were evaluated. The results confirmed that increasing the current density results in improving the removal of TC. However, increasing the current density beyond 5 mA/cm2 had little effect on TC removal. Results revealed that TC removal using photoanodic oxidation can be achieved at high performance with an initial pH of 5. Increasing or decreasing pH beyond this value has a negative effect on TC removal. Increasing rotation speed gave better performance for TC removal due to the increase in mass t

... Show More
View Publication
Crossref
Publication Date
Thu May 13 2021
Journal Name
International Journal Of Development In Social Science And Humanities
The Impact of Teachers using Storytelling Techniques through Virtual Instruction to Increase English Speaking Ability
...Show More Authors

DBN Rashid, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021

View Publication
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Jul 18 2024
Journal Name
Journal Of Economics And Administrative Sciences
The Role Of Cognitive Sharing In Enhancing The E-Learning Quality An Analytical Study Of A Sample Of Iraqi Universities
...Show More Authors

The world faced many communication challenges in 2020 after the Covid-19 pandemic, the most important of which was the continuation of schooling. Therefore, the research aimed to analyze the current reality of the studied universities in terms of strengths and weaknesses and measure the implementing level of quality requirements of e-learning. This research studies the impact of knowledge sharing in its dimensions (behavior, organizational culture, work teams, and technology) on the e-learning quality and its dimensions (e-learning management, educational content, evaluation ,and evaluation). After conducting the survey, there was a difference in the universities’ application of the quality requirements of e-learning, as the study

... Show More
View Publication
Crossref