Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
The current study aimed to use some bacterial isolates from the local soil of Baghdad city by study the effects of temperature, pH and incubation period on the growth rates of isolated bacteria and choose the optimal conditions for their diversity and for understanding bacterial growth and their requirements for survival and proliferation. This information can be applied to obtain their high growth rate for use in various fields such as agriculture, medicine and environmental sciences in the future. And it used to assess the degree of variation in across bacteria species in pH, temperature and incubation period. A number of local bacterial isolates as
Although text document images authentication is difficult due to the binary nature and clear separation between the background and foreground but it is getting higher demand for many applications. Most previous researches in this field depend on insertion watermark in the document, the drawback in these techniques lie in the fact that changing pixel values in a binary document could introduce irregularities that are very visually noticeable. In this paper, a new method is proposed for object-based text document authentication, in which I propose a different approach where a text document is signed by shifting individual words slightly left or right from their original positions to make the center of gravity for each line fall in with the m
... Show MoreHierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil
... Show Moren this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t
... Show MoreWith the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security. This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for
... Show MoreIn the current paradigms of information technology, cloud computing is the most essential kind of computer service. It satisfies the need for high-volume customers, flexible computing capabilities for a range of applications like as database archiving and business analytics, and the requirement for extra computer resources to provide a financial value for cloud providers. The purpose of this investigation is to assess the viability of doing data audits remotely inside a cloud computing setting. There includes discussion of the theory behind cloud computing and distributed storage systems, as well as the method of remote data auditing. In this research, it is mentioned to safeguard the data that is outsourced and stored in cloud serv
... Show More