Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
A single step extraction-cleanup procedure using porous membrane-protected micro-solid phase extraction (μ-SPE) in conjunction with liquid chromatography–tandem mass spectrometry for the extraction and determination of aflatoxins (AFs) B1, B2, G1 and G2 from food was successfully developed. After the extraction, AFs were desorbed from the μ-SPE device by ultrasonication using acetonitrile. The optimum extraction conditions were: sorbent material, C8; sorbent mass, 20 mg; extraction time, 90 min; stirring speed, 1000 rpm; sample volume, 10 mL; desorption solvent, acetonitrile; solvent volume, 350 μL and ultrasonication period, 25 min without salt addition. Under the optimum conditions, enrichment factor of 11, 9, 9 and 10 for AFG2, AFG1
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
The way used to estimate the fuzzy reliability differs according to the nature of the information of failure time which has been dealt in this research.The information of failure times has no probable distribution to explain it , in addition it has fuzzy quality.The research includes fuzzy reliability estimation of three periods ,the first one from 1986 to 2013,the second one from 2013 to 2033 while the third one from 2033 to 2066 .Four failure time have been chosen to identify the membership function of fuzzy trapezoid represented in the pervious years after taking in consideration the estimation of most researchers, proffional geologists and the technician who is incharge of maintaining of Mosul Dam project. B
... Show MoreThe understanding exchange rate policy is fundamental in order to identify the mechanism by which works out macroeconomic, And the vital for macroeconomic analysis and empirical work to differentiate between the de facto regimes and de jure regimes, Where the proved surveys and studies issued by the international monetary fund that there is divergence between the de facto regime (Regime of exchange applied by the country actually) and between the de jure regime (Regime de jure through the documents and formal writings of officials of the central bank), And launched studies on the de facto regime (Being a the basis of evaluating monetary policy) Stabilized (peg-like)arrangements or
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
The research aims to diagnose the causes of the phenomenon of Marketing deception catalog, which is now deployed in the Iraqi market and related to producers and marketers, consumers, regulators and other institutions) and their impact in the areas of prejudice to the consumer protection (product and signifying specifications, price, advertising, packaging), as well as identify differences in the sample responses according to personal variables, it has been the adoption of the resolution as a tool to collect data and information through a sample survey of consumer opinions totaling 108 people in shopping centers in the province of Baghdad and in the Karkh and Rusafa, It was the use of methods selected statistical represented by the arith
... Show More