Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based on the percentage of an accuracy measure of the previous work, are surveyed and introduced, with the aim of producing a concise review of using these algorithms in crime prediction. It is expected that this review study will be helpful for presenting such techniques to crime researchers in addition to supporting future research to develop these techniques for crime analysis by presenting some crime definition, prediction systems challenges and classifications with a comparative study. It was proved though literature, that supervised learning approaches were used in more studies for crime prediction than other approaches, and Logistic Regression is the most powerful method in predicting crime.
Secure storage of confidential medical information is critical to healthcare organizations seeking to protect patient's privacy and comply with regulatory requirements. This paper presents a new scheme for secure storage of medical data using Chaskey cryptography and blockchain technology. The system uses Chaskey encryption to ensure integrity and confidentiality of medical data, blockchain technology to provide a scalable and decentralized storage solution. The system also uses Bflow segmentation and vertical segmentation technologies to enhance scalability and manage the stored data. In addition, the system uses smart contracts to enforce access control policies and other security measures. The description of the system detailing and p
... Show MoreIn many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte
... Show MoreObjectives: This study aims to evaluate the role of social media in promoting awareness of green university initiatives and assess the effectiveness of sustainability reports in engaging students at Baghdad University. In alignment with Sustainable Development Goal 12 (Responsible Consumption and Production),It seeks to provide recommendations for enhancing digital platforms for sustainability communication. Theoretical Framework: The study is grounded in the Green University Model, Social Media Engagement Theory, and the Sustainability Reporting Framework, which emphasize integrating sustainable practices in education, using digital platforms for community engagement, and leveraging sustainability reports for transparency and
... Show MoreThe current research aims to identify the effect of the learning mastery strategy using interactive learning as a therapeutic method on the achievement of secondary school students in mathematics. To achieve the research objective, the researcher selected second-grade middle school students at Al-Haybah Intermediate School for Boys and determined his research sample, which consisted of (77) students distributed into two sections: Section (A) the experimental group, with (38) students, and Section (B) the control group, with (39) students. The statistical equivalence of the two research sample groups was confirmed in the variables (intelligence test, previous achievement, and previous knowledge test). The researchers chose the par
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreA Multiple System Biometric System Based on ECG Data
The research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.
This study aim to identify the concept of web based information systems since its one of the important topics that is usually omitted by our organizations, in addition to, designing a web based information system in order to manage the customers data of Al- Rasheed bank, as a unified information system that is specialized to the banking deals of the customers with the bank, and providing a suggested model to apply the virtual private network as a tool that is to protect the transmitted data through the web based information system.
This study is considered important because it deals with one of the vital topics nowadays, namely: how to make it possible to use a distributed informat
... Show MoreBlockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and
... Show MoreAs s widely use of exchanging private information in various communication applications, the issue to secure it became top urgent. In this research, a new approach to encrypt text message based on genetic algorithm operators has been proposed. The proposed approach follows a new algorithm of generating 8 bit chromosome to encrypt plain text after selecting randomly crossover point. The resulted child code is flipped by one bit using mutation operation. Two simulations are conducted to evaluate the performance of the proposed approach including execution time of encryption/decryption and throughput computations. Simulations results prove the robustness of the proposed approach to produce better performance for all evaluation metrics with res
... Show More