Milling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, but few of them provided the distribution of RS in a direct and singular way. This work focuses on studying and optimizing the effect of cutting speed, feed rate, and depth of cut for 6061-T3 aluminum alloy on the RS of the surface. The optimum values of geometry parameters have been found by using the L27 orthogonal array. Analysis and simulation of RS by using an artificial neural network (ANN) were carried out to predict the RS behavior due to changing machining process parameters. Using ANN to predict the behavior of RS due to changing machining process parameters is presented as a promising method. The milling process produces more RS at high cutting speed, roughly intermediate feed rate, and deeper cut, according to the results. The best residual stress obtained from ANN is ‒135.204 N/mm2 at a cutting depth of 5 mm, feed rate of 0.25 mm/rev and cutting speed of 1,000 rpm. ANN can be considered a powerful tool for estimating residual stress
In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreNearly a century and a half has passed since Sarah Orne Jewett published her much anthologized short story “A White Heron” (1886), but commentators on the tale missed one of the most important points in the text. It is the story’s similarity to the traditional Euro-centric fairy tale of “Little Red Riding Hood”. As an author, writing at the end of the ninetieth century, a time that witnessed the demise of the Romantic movement in America and the beginning of the age of Realism, Jewett did not romanticize her characters, despite the idyllic landscape in which “A White Heron” is set. Her story can be analyzed as a text that aims at disseminating ecological awareness among her young readers. This study focuses on Jewett
... Show MoreTime-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreThis study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight).
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreObjectives: The study aims at identifying the nurses’ knowledge about peritoneal dialysis complications, to
construct an education program for nurses in peritoneal dialysis units, to determine the effectiveness of the
education program upon the nurses' knowledge about complications of peritoneal dialysis, and to identify the
relationship between the nurses’ knowledge and their demographic characteristics of level of education and
years of experience.
Methodology: A quasi-experimentai study was carried out at the peritoneal dialysis units of Baghdad teaching
hospitals, from April 2004 to April 2006.
٨ purposive sample of (50) nurse was selected from Baghdad teaching hospitals. These nurses working at the
perit
Objectives: The present study aims at detecting the depression among nurses who provide care for infected patients with corona virus phenomenon and to find out relationships between the depression and their demographic characteristics of age, gender, marital status, type of family, education, and years of experience of nurses in heath institutions, infection by corona virus, and their participation in training courses.
Methodology: A descriptive study is established for a period from October 10th, 2020 to April 15th, 2021. The study is conducted on a purposive (non-probability) sample of (100) nurse who are providing care for patients with COVID-19 and they are selected from the isolation wards. The instrument of the study is develope