Biodiesel is becoming one of the most attractive alternative biofuels for petroleum-based diesel fuels. The castor plant is one of the abundant non-edible oils found in many countries. This paper aims to study Libyan castor oil and its potential for diesel conversion. Experiments were carried out in the laboratories of the Specific Center for Training in the Oil Industries in Al-Zawiya. The oil was extracted using a Soxhlet extractor and n-hexane solvent at 60 °C. Transesterification reactions were conducted in a batch reactor (a three-neck flask was used, where the middle opening carries a reflux condensation unit) at 65 °C. The methanol-to-castor oil molar ratio was 6:1, with a catalyst concentration of 1 wt.% relative to the castor oil, and the reaction time was 30 min. Castor oil was analysed and found to have a fatty acid content of 0.7%. The productivity of biodiesel exhibited 80% yield. Standard test methods of analysis were conducted to determine the biodiesel’s properties. Results indicated that the kinematic viscosity at 40 °C was 14.24 cSt, the density was 0.924 g/cm3, the cetane number (CN) was 54 and the pour point was −15 °C, indicating that castor oil biodiesel is of high quality, with a high CN and a low pour point.
In this work ,medical zinc oxide was produced from zinc scraps instead of traditional method which used for medical applications such as skin diseases, Iraq is importing around 50 ton/year for samarra plant the producted powder has apartical size less than 5 micron and the purity was more than 99.98%,also apilot plant of yield capacitiy 15 kg/8hours wsa designed and manufactured .
The ability of pulverized walnut-shell to remove oil from aqueous solutions has been studied. It involves two-phase process which consists of using walnut-shell as a filtering bed for the accumulation and adsorption of oil onto its surface. Up to 96% oil removal from synthetic wastewater samples was achieved while tests results showed that 75% of oil can be removed from the actual wastewater discharged from Al- Duara refinery in the south of Baghdad.
This study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreResults showed that the optimum conditions for production of inulunase from isolate Kluyveromyces marxianus AY2 by submerged culture could be achieved by using inulin as carbon source at a concentration of 2% with mixture of yeast extract and ammonium sulphate in a ratio of 1:1 in a concentration of 1% at initial pH 5.5 after incubation for 42 hours at 30ºC.
The aim of the research to apply TD-ABC technology to determine the idle capacity of the central oil companies (oil field east of Baghdad), as a modern cost management technology based on time-oriented activities (TD-ABC) is used by industrial companies in general and oil companies on In particular to build a sustainable Calvinist pillar and make future decisions by identifying idle energy to gain it a competitive advantage, the descriptive analytical approach has been adopted in calculating and analyzing the company’s data for 2018, and the most prominent conclusions of this research are managing idle energy and the task of applying cost technology on the basis of time-oriented activities and providing Convenient spatial infor
... Show MoreIn this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin