Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is efficient, has very few free parameters to tune, and the authors show how to tune the few remaining parameters. Results show that the method reliably aligns various datasets including two facial datasets and two medical datasets of prostate and brain MRI images and demonstrates efficiency in terms of performance and a reduction of the computational cost.
In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori
This paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreDigital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method
... Show Moreالحمدُ للهِ رب العالمين ، والصلاة والسلام على نبيه الأمين محمد r وعلى آله الطيبين الطاهرين ، وأصحابه الغر الميامين:
تعد الصورة السمعية مفهوما بيانيا نجده في البلاغة العربية واضحاً مؤثرا، مؤديا دورا جوهريا في إيصال الفكرة التي يروم الأديب إيصالها إلى المتلقي ولا تبدو السمعية واضحة إلاّ إذا نظر إليها في حالة أدبيه تهز كيان الشاعر  
... Show MoreKey-frame selection plays an important role in facial expression recognition systems. It helps in selecting the most representative frames that capture the different poses of the face. The effect of the number of selected keyframes has been studied in this paper to find its impact on the final accuracy of the emotion recognition system. Dynamic and static information is employed to select the most effective key-frames of the facial video with a short response time. Firstly, the absolute difference between the successive frames is used to reduce the number of frames and select the candidate ones which then contribute to the clustering process. The static-based information of the reduced sets of frames is then given to the fuzzy C-Means algor
... Show MoreIn this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
In this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.