The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.
The research aims to demonstrate the impact of TDABC as a strategic technology compatible with the rapid developments and changes in the contemporary business environment) on pricing decisions. As TDABC provides a new philosophy in the process of allocating indirect costs through time directives of resources and activities to the goal of cost, identifying unused energy and associated costs, which provides the management of economic units with financial and non-financial information that helps them in the complex and dangerous decision-making process. Of pricing decisions. To achieve better pricing decisions in light of the endeavor to maintain customers in a highly competitive environment and a variety of alternatives, the resear
... Show MoreComputer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of
... Show MoreTransient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure sinusoidal amplitude range and
... Show MoreStumpff functions are an infinite series that depends on the value of z. This value results from multiplying the reciprocal semi-major axis with a universal anomaly. The purpose from those functions is to calculate the variation of the universal parameter (variable) using Kepler's equation for different orbits. In this paper, each range for the reciprocal of the semi-major axis, universal anomaly, and z is calculated in order to study the behavior of Stumpff functions C(z) and S(z). The results showed that when z grew, Stumpff functions for hyperbola, parabola, and elliptical orbits were also growing. They intersected and had a tendency towards zero for both hyperbola and parabola orbits, but for elliptical orbits, Stumpff functions
... Show MoreThis investigation aimed to explain the mechanism of MFCA by applying this method on air-cooled engine factory which was suffering from high production cost. The results of this study revealed that MFCA is a useful tool to identify losses and inefficiencies of the production process. It is found that the factory is suffering from high losses due to material energy and system losses. In conclusion, it is calculated that system losses are the highest among all the losses due to inefficient use of available production capacity.
This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show More