There is an assumption implicit but fundamental theory behind the decline by the time series used in the estimate, namely that the time series has a sleep feature Stationary or the language of Engle Gernger chains are integrated level zero, which indicated by I (0). It is well known, for example, tables of t-statistic is designed primarily to deal with the results of the regression that uses static strings. This assumption has been previously treated as an axiom the mid-seventies, where researchers are conducting studies of applied without taking into account the properties of time series used prior to the assessment, was to accept the results of these tests Bmanueh and delivery capabilities based on the applicability of the theo
... Show MoreIn this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreAbstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
The differential cross section for the Rhodium and Tantalum has been calculated by using the Cross Section Calculations (CSC) in range of energy(1keV-1MeV) . This calculations based on the programming of the Klein-Nashina and Rayleigh Equations. Atomic form factors as well as the coherent functions in Fortran90 language Machine proved very fast an accurate results and the possibility of application of such model to obtain the total coefficient for any elements or compounds.
In this paper ,the problem of point estimation for the two parameters of logistic distribution has been investigated using simulation technique. The rank sampling set estimator method which is one of the Non_Baysian procedure and Lindley approximation estimator method which is one of the Baysian method were used to estimate the parameters of logistic distribution. Comparing between these two mentioned methods by employing mean square error measure and mean absolute percentage error measure .At last simulation technique used to generate many number of samples sizes to compare between these methods.
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.