This study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-temperature performance grade, fatigue parameter (G*.sin δ), Linear Amplitude Sweep (LAS), and IDEAL-CT test integrated with Digital Image Correlation (DIC). The results confirmed that nanomaterial modification significantly enhanced asphalt binder performance, though the effectiveness varied with type and dosage. Physical tests demonstrated improved stiffness, softening point, and reduced temperature susceptibility, with slight ductility losses at higher dosages. Rotational viscosity analysis indicated that low-to-moderate contents ensured workability excluding high CNT dosages which exceeded Superpave limits. High-temperature PG improved notably with NS, NZ, and CNT, while NA and NT showed limited gains. Fatigue parameter results (G*.sin δ) identified NA and NT as the most consistent in reducing cracking susceptibility. LAS testing confirmed superior fatigue lives at optimal dosages of 6% NA, 6% NT, 2% NS, 2% CNT, and 1% NZ, while higher concentrations often caused agglomeration and performance decline. IDEAL-CT and DIC analyses validated these findings by demonstrating increased fracture energy, CT index, and more uniform strain distributions in nano-modified mixtures compared to neat asphalt. FTIR spectra confirmed reduced oxidative aging most prominently with NT and NA while SEM revealed enhanced microstructural cohesion and reduced surface defects. The integration of the Overall Desirability (OD) framework confirmed NT-6 as the most effective dosage, followed by NZ-1 and NS-2, while higher dosages often led to poor compatibility and performance decline. Complementary cost–effectiveness analysis further demonstrated that lower dosages of NZ, NT, and NS achieved the best balance between technical performance and economic viability, whereas excessive CNT and NT contents were not recommended due to unfavorable cost-to-performance ratios. These findings highlight that dosage optimization is critical for translating nanomaterial benefits into practical pavement engineering applications, ensuring enhanced durability with rational investment of resources.
This study focuses on the behavior of simply supported perforated prestressed concrete rafters (PPCRs) under single midspan monotonic static loading. The experimental program consisted of testing seven specimens; one solid (control) rafter, and six perforated with quadrilateral openings. The main investigated variables are the number and height of the openings. The test findings indicate that, in comparison to the solid rafter, the presence of quadrilateral openings in the PPCRs led to reducing the load capacity by (4.3-36%) and increase the midspan deflection at ultimate by (14.8-33%). Also, increasing the number of concrete posts between openings resulted in increasing the failure load and decreasing the deflection at all stages o
... Show MoreThis research aims to study the performance of comedian in the plays of writer Moliere . The problem of research is to answer the following question: How does comedian Moliere's techniques in a number of his plays and funny acts? The research aims at revealing the means used by the comedian in his performance of a comedic character in the number of Moliere plays.
&
... Show MoreThe vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
The design, construction and investigation of experimental study of two compound parabolic concentrators (CPCs) with tubular absorber have been presented. The performance of CPCs have been evaluated by using outdoor experimental measurements including the instantaneous thermal efficiency. The two CPCs are tested instantly by holding them on a common structure. Many tests are conducted in the present work by truncating one of them in three different levels. For each truncation the acceptance half angle (θc) was changed. Geometrically, the acceptance half angle for standard CPC is (26o). For the truncation levels for the other CPC 1, 2 and 3 the acceptance half angle were 20o, 26o and 5
... Show MoreUniversities are among spaces where it's important to ensure thermal comfort in indoor spaces, improving the occupants' well-being and productivity. The problem of the research was to study appropriate glazing systems for the spaces of the University of Baghdad because glazing systems are one of the most important elements of the indoor environments, and it has a major impact on the thermal performance of buildings. Glass is one of the most seasoned materials that are most utilized in the design. Since it is a diaphanous material, it allows sunlight to enter the building, increasing the space's temperature, cooling loads, and energy consumption in summer. The research followed the experimental method by studying and
... Show MoreThe problem of the research is focused on importance limited of Iraq industrial companies in application of scientific measurements of supply chains performance, The research sought to achieve a group of goals, the most important are , identifying the strengths and weaknesses in the reality of supply chain in General Company for Cotton Industries, The data and information required are gathered from the dependence company, records through the field observations and personal interviews, the research used some quantitative indicators to measure of supply chain performance, The research reached to many conclusions , the most outstanding among them is the existence of a strong inverse correlatio
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show More An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
An experimental work has been conducted on wall attachment fluidics amplifiers, one of them to study the effect of output pressure or load on the amplifier performance. The output load has been simulated as a piston connected to the device output and the piston can be loaded accordingly. The results shows that the output volume flow rate increases as the supply pressure increases under different load and the output pressure remains constant as the supply pressure increases under constant load.