Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.
Absence or hypoplasia of the internal carotid artery (ICA) is a rare congenital anomaly that is mostly unilateral and highly associated with other intracranial vascular anomalies, of which saccular aneurysm is the most common. Blood flow to the circulation of the affected side is maintained by collateral pathways, some of which include the anterior communicating artery (Acom) as part of their anatomy. Therefore, temporary clipping during microsurgery on Acom aneurysms in patients with unilateral ICA anomalies could jeopardize these collaterals and place the patient at risk of ischemic damage. In this paper, we review the literature on cases with a unilaterally absent ICA associa
The usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreA load-shedding controller suitable for small to medium size loads is designed and implemented based on preprogrammed priorities and power consumption for individual loads. The main controller decides if a particular load can be switched ON or not according to the amount of available power generation, load consumption and loads priorities. When themaximum allowed power consumption is reached and the user want to deliver power to additional load, the controller will decide if this particular load should be denied receiving power if its priority is low. Otherwise, it can be granted to receive power if its priority is high and in this case lower priority loads are automatically switched OFF in order not to overload the power generation. The
... Show MoreThis study was done to evaluate a new technique to determine the presence of methamphetamine in the hair using nano bentonite-based adsorbent as the filler of extraction column. The state of the art of this study was based on the presence of silica in the nano bentonite that was assumed can interact with methamphetamine. The hair used was treated using methanol to extract the presence of methamphetamine, then it was continued by sonicating the hair sample. Qualitative analysis using Marquish reagent was performed to confirm the presence of methamphetamine in the isolate.The hair sample that has been taken in a different period confirmed that this current developing method can be used to analyzed methamphetamine. This m
... Show MoreThe present work deals with five species of parasitic Hymenoptera belonging to Pteromalidae, Eupelmidae and Eurytornidae which have been reared from brachid beetles. A new species, Eurytoma irakensis is described and the species, Bruchocida orientalis Crawford is recorded for the first time from Iraq.
In this study, we introduce new a nanocomposite of functionalize graphene oxide FGO and functionalize multi wall carbon nanotube (F-MWCNT-FGO).The formation of nanocomposite was confirmed by FT-IR ,XRD and SEM. The magnitude of the dielectric permittivity of the (F-MWCNT-FGO) nanocomposite appears to be very high in the low frequency range and show a unique negative permittivity at frequencies range from 400 Hz to 4000Hz. The ac conductivity of nanocomposite reaches 23.8 S.m-1 at 100Hz.
The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More