Preferred Language
Articles
/
LxfsW5IBVTCNdQwCqq1N
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven classifiers. A hybrid supervised learning system that takes advantage of rich intermediate features extracted from deep learning compared to traditional feature extraction to boost classification accuracy and parameters is suggested. They provide the same set of characteristics to discover and verify which classifier yields the best classification with our new proposed approach of “hybrid learning.” To achieve this, the performance of classifiers was assessed depending on a genuine dataset that was taken by our camera system. The simulation results show that the support vector machine (SVM) has a mean square error of 0.011, a total accuracy ratio of 98.80%, and an F1 score of 0.99. Moreover, the results show that the LR classifier has a mean square error of 0.035 and a total ratio of 96.42%, and an F1 score of 0.96 comes in the second place. The ANN classifier has a mean square error of 0.047 and a total ratio of 95.23%, and an F1 score of 0.94 comes in the third place. Furthermore, RF, WKNN, DT, and NB with a mean square error and an F1 score advance to the next stage with accuracy ratios of 91.66%, 90.47%, 79.76%, and 75%, respectively. As a result, the main contribution is the enhancement of the classification performance parameters with images of varying brightness and clarity using the proposed hybrid learning approach.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 22 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Studying the Optimal Conditions for Extraction of Local Basil Seeds Gum.: Studying the Optimal Conditions for Extraction of Local Basil Seeds Gum.
...Show More Authors

This study aimed to determine the optimal conditions for extracting basil seed gum in addition to determine the chemical components of basil seeds. Additionally, the study aimed to investigate the effect of the mixing ratio of gum to ethanol when deposited on the basis of the gum yield which was1:1, 1:2, 1:3 (v/v) respectively. The best mixing ratio was one size of gum to two sizes of ethanol, which recorded the highest yield. Based on the earlier, the optimal conditions for extracting basil seed gum in different levels which included pH, temperature, mixing ratio seeds: water and the soaking duration were studied. The optimal conditions were: pH 8, temperature of 60°C, mixing ratio seeds: water 1:65 (w/v) and soaking duration of 30 min

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Constructing a new mixed probability distribution with fuzzy reliability estimation
...Show More Authors

This paper deals with constructing mixed probability distribution from mixing exponential

Scopus (5)
Scopus
Publication Date
Mon Mar 02 2020
Journal Name
Journal Of Applied Research In Higher Education
Proposal of a guide for talent evaluation and management based on a qualitative and three-staged approach
...Show More Authors
Purpose

The key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.

Design/methodology/approach

The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty-three individuals from six Australian universities parti

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
A Mathematical Approach for Computing the Linear Equivalence of a Periodic Key-Stream Sequence Using Fourier Transform
...Show More Authors

A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
Image Segmentation for Skin Detection
...Show More Authors

Human skin detection, which usually performed before image processing, is the method of discovering skin-colored pixels and regions that may be of human faces or limbs in videos or photos. Many computer vision approaches have been developed for skin detection. A skin detector usually transforms a given pixel into a suitable color space and then uses a skin classifier to mark the pixel as a skin or a non-skin pixel. A skin classifier explains the decision boundary of the class of a skin color in the color space based on skin-colored pixels. The purpose of this research is to build a skin detection system that will distinguish between skin and non-skin pixels in colored still pictures. This performed by introducing a metric that measu

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid technique for solving fractional delay variational problems by the shifted Legendre polynomials
...Show More Authors

This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Journal Of Structural Engineering
Standard Pushout Tests and Design Rules for a Bolted–Welded Hybrid Demountable Shear Connector
...Show More Authors

A bolted–welded hybrid demountable shear connector for use in deconstructable steel–concrete composite buildings and bridges was proposed. The hybrid connector consisted of a partially threaded stud, which was welded on the flange of a steel section, and a machined steel tube with compatible geometry, which was bolted on the stud. Four standard pushout tests according to Eurocode 4 were carried out to assess the shear performance of the hybrid connector. The experimental results show that the initial stiffness, shear resistance, and slip capacity of the proposed connector were higher than those of traditional welded studs. The hybrid connector was a ductile connector, according to Eurocode 4, with slip capacity higher than 6 mm. A nonli

... Show More
View Publication
Scopus (20)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
ZnO: MWCNT optical hybrid filter a promising nanomaterial for wastewater treatment and antimicrobial applications
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref