Iron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconductive detector were measured. The performance of the fabricated detector was taken under dark and illumination using two types of light sources: UV LED with wavelength (365[Formula: see text]nm), power of (10[Formula: see text]W) and Tungsten lamp with wavelength range between (500–800) nm and the optical power of (250[Formula: see text]W). The photoresponse enhancement was improved by coating the FePc films with 200[Formula: see text]nm of polyamide nylon polymer. This type of coating, which can be considered as a surface treatment, highly increased the photoresponse of the fabricated FePc UV detector. The results show that the responsivity increased four orders of magnitudes more than the responsivity of the uncoated FePc film. The effects of the coated polymers on the responsivity and the response time of the detector were investigated.
To show the impact of 790-805 nm diode laser irradiations on wound healing as a supplementary treatment in women underwent episiotomies, and to assess the laser parameters that were used .Material and methods: Eighteen female patients were included in this study; all of them underwent mediolateral episiotomy. Ten patients received laser therapy- diode laser (K Laser) (790-805) nm in CW mode of operation (and eight patients were the control group. Spot size of 8mm, time for exposure for each spot was 30 seconds. The power used was 0.6 W .The power density for each spot of treatment was 1.19 W/cm2 per session (non contact mode of application of laser therapy).The group studied received 2 sessions of laser radiation, day 4, and day 8 after
... Show MoreThe dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
The research aims to identify the effect of the training program that is based on integrating futuristic thinking skills with classroom interaction patterns on mathematics teachers in order to provide their students with creative solution skills. The research sample consisted of 31teachers (15 teachers for the experimental group and 16 for the control groups). The researcher developed a measure for the academic self-efficacy consisting of (39) items. Its validity, reliability, coefficient of difficulty and discriminatory power were estimated. To analyze the findings, the researcher adopted the Mann-Whitney (U) test and the effect size, and the findings were as follows: There is a statistically significant difference at the significance leve
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
Thin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new m
... Show MoreThermal evaporation method has used for depositing CdTe films
on corning glass slides under vacuum of about 10-5mbar. The
thicknesses of the prepared films are400 and 1000 nm. The prepared
films annealed at 573 K. The structural of CdTe powder and prepared
films investigated. The hopping and thermal energies of as deposited
and annealed CdTe films studied as a function of thickness. A
polycrystalline structure observed for CdTe powder and prepared
films. All prepared films are p-type semiconductor. The hopping
energy decreased as thickness increased, while thermal energy
increased.
Incremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga
... Show More